Features

- Synchronous Programmable $\div \mathbf{N}$ Counter N = 3 to 9999 or 15999
- Presettable Down-Counter
- Fully Static Operation
- Mode-Select Control of Initial Decade Counting Function ($\div 10,8,5,4,2$)
- Master Preset Initialization
- Latchable $\div \mathrm{N}$ Output
- Fanout (Over Temperature Range)
- Standard Outputs 10 LSTTL Loads
- Bus Driver Outputs 15 LSTTL Loads
- Wide Operating Temperature Range ... $-55^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
- Balanced Propagation Delay and Transition Times
- Significant Power Reduction Compared to LSTTL Logic ICs
- HC Types
- 2V to 6V Operation
- High Noise Immunity: $\mathbf{N}_{\mathrm{IL}}=30 \%, \mathrm{~N}_{\mathrm{IH}}=30 \%$ of V_{CC} at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Applications

- Communications Digital Frequency Synthesizers; VHF, UHF, FM, AM, etc.
- Fixed or Programmable Frequency Division
- "Time Out" Timer for Consumer-Application Industrial Controls

Ordering Information

PART NUMBER	TEMP. RANGE (${ }^{\circ} \mathbf{C}$)	PACKAGE
CD54HC4059F3A	-55 to 125	24 Ld CERDIP
CD74HC4059E	-55 to 125	24 Ld PDIP
CD74HC4059M96	-55 to 125	24 Ld SOIC

NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel.

Description

The 'HC4059 are high-speed silicon-gate devices that are pin-compatible with the CD4059A devices of the CD4000B series. These devices are divide-by-N down-counters that can be programmed to divide an input frequency by any number " N " from 3 to 15,999 . The output signal is a pulse one clock cycle wide occurring at a rate equal to the input frequency divide by N . The down-counter is preset by means of 16 jam inputs.
The three Mode-Select Inputs $\mathrm{K}_{\mathrm{a}}, \mathrm{K}_{\mathrm{b}}$ and K_{c} determine the modulus ("divide-by" number) of the first and last counting sections in accordance with the truth table. Every time the first (fastest) counting section goes through one cycle, it reduces by 1 the number that has been preset (jammed) into the three decades of the intermediate counting section an the last counting section, which consists of flip-flops that are not needed for opening the first counting section. For example, in the $\div 2$ mode, only one flip-flop is needed in the first counting section. Therefore the last counting section has three flip-flops that can be preset to a maximum count of seven with a place value of thousands. If $\div 10$ is desired for the first section, K_{a} is set "high", K_{b} "high" and K_{c} "low". Jam inputs $\mathrm{J} 1, \mathrm{~J} 2$, J3, and J4 are used to preset the first counting section and there is no last counting section. The intermediate counting section consists of three cascaded BCD decade $(\div 10)$ counters presettable by means of Jam Inputs J5 through J16.

The Mode-Select Inputs permit frequency-synthesizer channel separations of 10, 12.5, 20, 25 or 50 parts. These inputs set the maximum value of N at 9999 (when the first counting section divides by 5 or 10) or 15,999 (when the first counting section divides by 8,4 , or 2).

The three decades of the intermediate counter can be preset to a binary 15 instead of a binary 9 , while their place values are still 1,10 , and 100 , multiplied by the number of the $\div \mathrm{N}$ mode. For example, in the $\div 8$ mode, the number from which counting down begins can be preset to:

3rd Decade	1500
2nd Decade	150
1st Decade	15
Last Counting Section	1000

The total of these numbers (2665) times 8 equals 12,320. The first counting section can be preset to 7 . Therefore, 21,327 is the maximum possible count in the $\div 8$ mode.

The highest count of the various modes is shown in the Extended Counter Range column. Control inputs K_{b} and K_{c} can be used to initiate and lock the counter in the "master preset" state. In this condition the flip-flops in the counter are preset in accordance with the jam inputs and the counter remains in that state as long as K_{b} and K_{c} both remain low. The counter begins to count down from the preset state when a counting mode other than the master preset mode is selected.

The counter should always be put in the master preset mode before the $\div 5$ mode is selected. Whenever the master preset mode is used, control signals $\mathrm{K}_{\mathrm{b}}=$ "low" and $\mathrm{K}_{\mathrm{C}}=$ "low" must be applied for at least 3 full clock pulses.

After Preset Mode inputs have been changed to one of the \div modes, the next positive-going clock transition changes an internal flip-flop so that the countdown can begin at the second positive-going clock transition. Thus, after an MP (Master Preset) mode, there is always one extra count before the output goes high. Figure 1 illustrates a total count of 3 ($\div 8$ mode). If the Master Preset mode is started two clock cycles or less before an output pulse, the output pulse will appear at the time due. If the Master Preset Mode is not used, the counter jumps back to the "Jam" count when the output pulse appears.

A "high" on the Latch Enable input will cause the counter output to remain high once an output pulse occurs, and to remain in the high state until the latch input returns to "low". If the Latch Enable is "low", the output pulse will remain high for only one cycle of the clock-input signal.

Pinout

	CD54HC4059 (CERDIP) CD74HC4059 (PDIP, SOIC) TOP VIEW	
CP 1	\checkmark	24 vcc
LE 2		23 Q
J1 3		22 J 5
J2 4		21 J6
J3 5		$20 \mathrm{J7}$
J4 6		19 J8
J16 7		18 J9
J15 8		17 J 10
J14 9		16 J 11
J13 10		15 J 12
$\mathrm{K}_{\mathrm{c}} 11$		14 Ka
GND 12		13 Kb

Functional Diagram

TRUTH TABLE

MODE SELECT INPUT			FIRST COUNTING SECTION			LAST COUNTING SECTION			COUNTER RANGE				
			DESIGN	EXTENDED									
K_{a}	K_{b}	K_{c}				MODE DIVIDES-BY		(NOTE 1) JAM INPUTS USED:	MODE DIVIDES-BY		(NOTE 1) JAM INPUTS USED:	MAX	MAX
H	H	H	2	1	J1	8	7	J2, J3, J4	15,999	17,331			
L	H	H	4	3	J1, J2	4	3	J3, J4	15,999	18,663			
H	L	H	$\begin{gathered} 5 \\ \text { (Note 2) } \end{gathered}$	4	J1, J2, J3	2	1	J4	9,999	13,329			
L	L	H	8	7	J1, J2, J3	2	1	J4	15,999	21,327			
H	H	L	10	9	J1, J2, J3, J4	1	0	-	9,999	16,659			
X	L	L	Master Preset			Master Preset			-	-			

X = Don't care
NOTES:

1. $\mathrm{J} 1=$ Least Significant Bit. $\mathrm{J} 4=$ Most Significant Bit.
2. Operation in the 5 mode (1st counting section) requires going through the Master Preset mode prior to going into the 5mode. At power turn-on, Kc must be "low" for a period of 3 input clock pulses after VCC reaches a minimum of 3V.

How to Preset the HC/HCT4059 to Desired \div N

The value N is determined as follows:
(EQ. 1)
$\mathrm{N}=(\mathrm{MODE} \dagger)(1000 \times$ Decade 5 Preset $+100 \times$ Decade 4
Preset $+10 \times$ Decade 3 Preset $+1 \times$ Decade 2 Preset) + Decade 1 Preset
\dagger MODE $=$ First counting section divider (10, 8, 5, 4 or 2)

To calculate preset values for any N count, divide the N count by the Mode. The resultant is the corresponding preset values of the 5th through 2nd decade with the remainder being equal to the 1 st decade value.

$$
\text { Preset Value }=\frac{\mathrm{N}}{\text { Mode }}
$$

(EQ. 2)

Program Jam Inputs (BCD)

4	1	5	9				6			
J1 J2 J3	J4	J5 J6 J7 J8	J9	J10	J11	J12	J13	J14	J15	J16
L L H	H	H L H L	H	L	L	H	L	H	H	L

NOTE: To verify the results, use Equation 1 :
$N=5(1000 \times 1+100 \times 6+10 \times 9+1 \times 5)+4$
$N=8479$

FIGURE 1. FUNCTIONAL BLOCK DIAGRAM

Absolute Maximum Ratings

Thermal Information

Operating Conditions

Supply Voltage Range, V_{CC}. 2 V to 6 V
DC Input or Output Voltage, $\mathrm{V}_{\mathrm{I}}, \mathrm{V}_{\mathrm{O}} \ldots \ldots \ldots . \ldots . . . \mathrm{OV}$ to V_{CC}
Input Rise and Fall Time

2 V	1000ns (Max)
4.5 V	500ns (Max)
6 V	400ns (Max)

CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied.

NOTES:
3. The package thermal impedance is calculated in accordance with JESD 51-3.
4. The package thermal impedance is calculated in accordance with JESD 51-7.

DC Electrical Specifications

PARAMETER	SYMBOL	TEST CONDITIONS		V_{Cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
		$\mathrm{V}_{1}(\mathrm{~V})$	10 (mA)		MIN	TYP	MAX	MIN	MAX	MIN	MAX	
High Level Input Voltage	V_{IH}	-	-	2	1.5	-	-	1.5	-	1.5	-	V
				4.5	3.15	-	-	3.15	-	3.15	-	V
				6	4.2	-	-	4.2	-	4.2	-	V
Low Level Input Voltage	V_{IL}	-	-	2	-	-	0.5	-	0.5	-	0.5	V
				4.5	-	-	1.35	-	1.35	-	1.35	V
				6	-	-	1.8	-	1.8	-	1.8	V
High Level Output Voltage CMOS Loads	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	-0.02	2	1.9	-	-	1.9	-	1.9	-	V
			-0.02	4.5	4.4	-	-	4.4	-	4.4	-	V
			-0.02	6	5.9	-	-	5.9	-	5.9	-	V
High Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			-4	4.5	3.98	-	-	3.84	-	3.7	-	V
			-5.2	6	5.48	-	-	5.34	-	5.2	-	V
Low Level Output Voltage CMOS Loads	V_{OL}	$\begin{gathered} \mathrm{V}_{\mathrm{IH}} \text { or } \\ \mathrm{V}_{\mathrm{IL}} \end{gathered}$	0.02	2	-	-	0.1	-	0.1	-	0.1	V
			0.02	4.5	-	-	0.1	-	0.1	-	0.1	V
			0.02	6	-	-	0.1	-	0.1	-	0.1	V
Low Level Output Voltage TTL Loads			-	-	-	-	-	-	-	-	-	V
			4	4.5	-	-	0.26	-	0.33	-	0.4	V
			5.2	6	-	-	0.26	-	0.33	-	0.4	V
Input Leakage Current	1	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	-	6	-	-	± 0.1	-	± 1	-	± 1	$\mu \mathrm{A}$
Quiescent Device Current	ICC	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \text { or } \\ & \mathrm{GND} \end{aligned}$	0	6	-	-	8	-	80	-	160	$\mu \mathrm{A}$

Prerequisite for Switching Specifications

PARAMETER	SYMBOL	V_{cc} (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85{ }^{\circ} \mathrm{C}$			${ }^{-55}{ }^{\circ} \mathrm{C}$ тO $125^{\circ} \mathrm{C}$			UNITS
			MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
Pulse Width CP	tw	2	90	-	-	115	-	-	135	-	-	ns
		4.5	18	-	-	23	-	-	27	-	-	ns
		6	15	-	-	20	-	-	23	-	-	ns
Setup Time $\mathrm{K}_{\mathrm{b}}, \mathrm{K}_{\mathrm{c}}$ to CP	tsu	2	75	-	-	95	-	-	110	-	-	ns
		4.5	15	-	-	19	-	-	22	-	-	ns
		6	13	-	-	16	-	-	19	-	-	ns
CP Frequency	$\mathrm{f}_{\text {MAX }}$	2	5	-	-	4	-	-	4	-	-	MHz
		4.5	27	-	-	22	-	-	18	-	-	MHz
		6	32	-	-	26	-	-	21	-	-	MHz

Switching Specifications input $t_{r}, t_{f}=6$ ns

PARAMETER	SYMBOL	TEST CONDITIONS	$V_{c c}$ (V)	$25^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ TO $85^{\circ} \mathrm{C}$		$-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$		UNITS
				MIN	TYP	MAX	MIN	MAX	MIN	MAX	
Propagation Delay, CP to Q		$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	200	-	250	-	300	ns
			4.5	-	-	40	-	50	-	60	ns
			6	-	-	34	-	43	-	51	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	17	-	-	-	-	-	ns
Propagation Delay, LE to Q	$t_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	175	-	220	-	265	ns
			4.5	-	-	35	-	44	-	53	ns
			6	-	-	30	-	37	-	45	ns
		$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	14	-	-	-	-	-	ns
Output Transition Time	$\mathrm{t}_{\text {THL }}$, $\mathrm{T}_{\text {TLH }}$	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	2	-	-	75	-	95	-	110	ns
			4.5	-	-	15	-	19	-	22	ns
			6	-	-	13	-	16	-	19	ns
CP Frequency	$f_{\text {MAX }}$	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$	5	-	54	-	-	-	-	-	MHz
Input Capacitance	Cl_{1}	-	-	-	-	10	-	10	-	10	pF
Power Dissipation Capacitance (Notes 5, 6)	CPD	-	5	-	36	-	-	-	-	-	pF

NOTES:
5. $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power consumption, per package.
6. $P_{D}=C_{P D} V_{C C}{ }^{2} f_{i}+\sum C_{L} V_{C C}{ }^{2} f_{0}$ where $f_{i}=$ input frequency, $f_{0}=$ output frequency, $C_{L}=$ output load capacitance, $V_{C C}=$ supply voltage.

Test Circuits and Waveforms

NOTE: Outputs should be switching from $10 \% \mathrm{~V}_{\mathrm{CC}}$ to $90 \% \mathrm{~V}_{\mathrm{CC}}$ in accordance with device truth table. For $f_{\text {MAX }}$, input duty cycle $=50 \%$. FIGURE 2. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH

FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC

FIGURE 4. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS

INSTRUMENTS

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead finish/ Ball material (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
CD74HC4059M96	ACTIVE	SOIC	DW	24	2000	RoHS \& Green	NIPDAU	Level-1-260C-UNLIM	-55 to 125	HC4059M	Samples
CD74HC4059M96G4	ACTIVE	SOIC	DW	24	2000	TBD	Call TI	Call TI	-55 to 125		Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free"
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a " \sim " will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Reel Diameter $(\mathbf{m m})$	Reel Width $\mathbf{W 1}(\mathbf{m m})$	A0 $(\mathbf{m m})$	B0 $(\mathbf{m m})$	K0 $(\mathbf{m m})$	P1 $(\mathbf{m m})$	W $(\mathbf{m m})$	Pin1 Quadrant
CD74HC4059M96	SOIC	DW	24	2000	330.0	24.4	10.75	15.7	2.7	12.0	24.0	Q1

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
CD74HC4059M96	SOIC	DW	24	2000	350.0	350.0	43.0

DW (R-PDSO-G24) PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed $0.006(0,15)$.
D. Falls within JEDEC MS-013 variation AD.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other Tl intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

Tl's products are provided subject to Tl's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. Tl's provision of these resources does not expand or otherwise alter Tl's applicable warranties or warranty disclaimers for TI products.
TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated

