SCAS688D-JUNE 2005-REVISED JULY 2007

FEATURES

- 1.8-V Phase Lock Loop Clock Driver for Double Data Rate (DDR II) Applications
- Spread Spectrum Clock Compatible
- Operating Frequency: 10 MHz to 400 MHz
- Low Current Consumption: <135 mA
- Low Jitter (Cycle-Cycle): ±30 ps
- Low Output Skew: 35 psLow Period Jitter: ±20 ps
- Low Dynamic Phase Offset: ±15 ps

- Low Static Phase Offset: ±50 ps
- Distributes One Differential Clock Input to Ten Differential Outputs
- 52-Ball µBGA (MicroStar[™] Junior BGA, 0,65-mm pitch) and 40-Pin MLF
- External Feedback Pins (FBIN, FBIN) are Used to Synchronize the Outputs to the Input Clocks
- Meets or Exceeds JESD82-8 PLL Standard for PC2-3200/4300
- Fail-Safe Inputs

DESCRIPTION

The CDCU877 is a high-performance, low-jitter, low-skew, zero-delay buffer that distributes a differential clock input pair (CK, $\overline{\text{CK}}$) to ten differential pairs of clock outputs (Yn, $\overline{\text{Yn}}$) and to one differential pair of feedback clock outputs (FBOUT, FBOUT). The clock outputs are controlled by the input clocks (CK, $\overline{\text{CK}}$), the feedback clocks (FBIN, $\overline{\text{FBIN}}$), the LVCMOS control pins (OE, OS), and the analog power input (AV_{DD}). When OE is low, the clock outputs, except FBOUT/ $\overline{\text{FBOUT}}$, are disabled while the internal PLL continues to maintain its locked-in frequency. OS (output select) is a program pin that must be tied to GND or V_{DD}. When OS is high, OE functions as previously described. When OS and OE are both low, OE has no affect on Y7/ $\overline{\text{Y7}}$, they are free running. When AV_{DD} is grounded, the PLL is turned off and bypassed for test purposes.

When both clock inputs (CK, $\overline{\text{CK}}$) are logic low, the device enters in a low power mode. An input logic detection circuit on the differential inputs, independent from input buffers, detects the logic low level and performs in a low power state where all outputs, the feedback, and the PLL are off. When the clock inputs transition from being logic low to being differential signals, the PLL turns back on, the inputs and the outputs are enabled, and the PLL obtains phase lock between the feedback clock pair (FBIN, $\overline{\text{FBIN}}$) and the clock input pair (CK, $\overline{\text{CK}}$) within the specified stabilization time.

The CDCU877 is able to track spread spectrum clocking (SSC) for reduced EMI. This device operates from —40°C to 85°C.

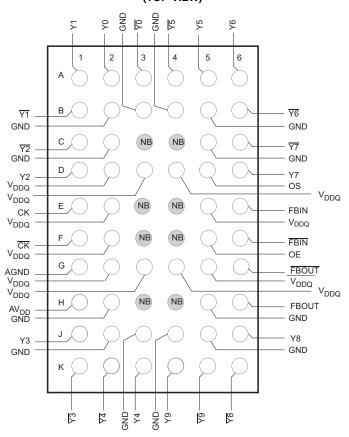
ORDERING INFORMATION

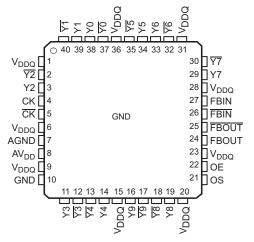
T _A	52-BALL BGA ⁽¹⁾	40-Pin MLF
	CDCU877ZQL	CDCU877RHA
-40°C to 85°C	CDCU877AZQL	CDCU877ARHA
-40°C 10 85°C	CDCU877GQL	CDCU877RTB
	CDCU877AGQL	CDCU877ARTB

(1) For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI website at www.ti.com.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

MicroStar is a trademark of Texas Instruments.


SCAS688D-JUNE 2005-REVISED JULY 2007


These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

MicroStar Junior (ZQL) Package (TOP VIEW)

- A. NC = No Connection
- B. NB = No Ball

RHA/RTB Package (MLF PAckage (TOP VIEW)

40-pin HP-VFQFP-N (6,0 x 6,0 mm Body Size, 0,5 mm Pitch, M0#220, Variation VJJD-2, E2 = D2 = 2,9 mm \pm 0,15 mm) Package Pinouts

SCAS688D-JUNE 2005-REVISED JULY 2007

TERMINAL FUNCTIONS

TI	ERMINAL		1/0	DECORIDATION
NAME	GQL/ZQL	RHA/RTB	I/O	DESCRIPTION
AGND	G1	7		Analog ground
AV_{DD}	H1	8		Analog power
CK	E1	4	I	Clock input with a (10 kΩ to 100 kΩ) pulldown resistor
СК	F1	5	Ι	Complementary clock input with a (10 k Ω to 100 k Ω) pulldown resistor
FBIN	E6	27	I	Feedback clock input
FBIN	F6	26	1	Complementary feedback clock input
FBOUT	H6	24	0	Feedback clock output
FBOUT	G6	25	0	Complementary feedback clock output
OE	F5	22	I	Output enable (asynchronous)
os	D5	21	1	Output select (tied to GND or V _{DD})
GND	B2, B3, B4, B5, C2, C5, H2, H5, J2, J3, J4, J5	10		Ground
V_{DDQ}	D2, D3, D4, E2, E5, F2, G2, G3, G4, G5	1, 6, 9, 15, 20, 23, 28, 31, 36		Logic and output power
Y[0:9]	A2, A1, D1, J1, K3, A5, A6, D6, J6, K4	3, 11, 14, 16, 19, 29, 33, 34, 38, 39	0	Clock outputs
Y[0:9]	A3, B1, C1, K1, K2, A4, B6, C6, K6, K5	2, 12, 13, 18, 17, 30, 32, 35, 37, 40	0	Complementary clock outputs

FUNCTION TABLE

		INPUTS					OUTPUT	S			
AVDD	OE	OS	CK	CK	Υ	Y	FBOUT	FBOUT	PLL		
GND	Н	Х	L	Н	L	Н	L	Н	Bypassed/Off		
GND	Н	Х	Н	L	Н	L	Н	L	Bypassed/Off		
GND	L	Н	L	Н	L _Z	L_Z	L	Н	Bypassed/Off		
GND	L	L	Н	L	L _Z Y7 Active	L _Z Y7 Active	Н	L	Bypassed/Off		
1.8 V Nominal	L	Н	L	Н	L _Z	L _Z	L	Н	On		
1.8 V Nominal	L	L	Н	L	L _Z Y7 Active	L _Z Y7 Active	Н	L	On		
1.8 V Nominal	Н	Х	L	Н	L	Н	L	Н	On		
1.8 V Nominal	Н	Х	Н	L	Н	L	Н	L	On		
1.8 V Nominal	Х	Х	L	L	L _Z	L _Z	L _Z	L _Z	Off		
X	Χ	Х	Н	Н	Reserved						

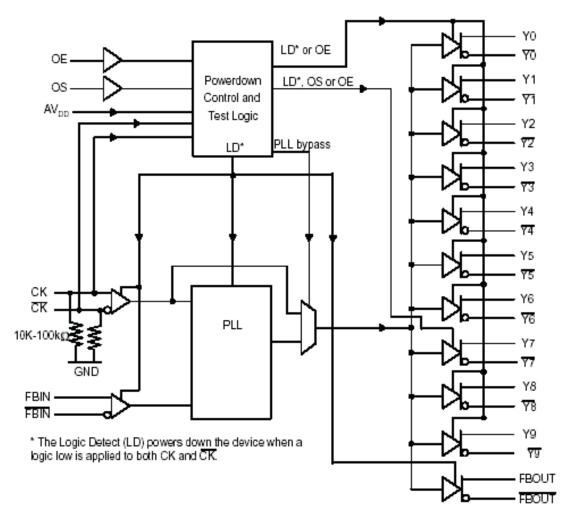


Figure 1. LOGIC DIAGRAM (POSITIVE LOGIC)

SCAS688D-JUNE 2005-REVISED JULY 2007

Absolute Maximum Ratings⁽¹⁾

over operating free-air temperature range (unless otherwise noted)

			MIN	MAX	UNIT
V _{CC}	Supply voltage range	V_{DDQ} or AV_{DD}	-0.5	2.5	V
VI	Input voltage range ⁽²⁾⁽³⁾		-0.5	$V_{DDQ} + 0.5$	V
Vo	Output voltage range (2)(3)		-0.5	$V_{DDQ} + 0.5$	V
I _{IK}	Input clamp current	$V_I < 0$ or $V_I > V_{DDQ}$		±50	mA
I _{OK}	Output clamp current	$V_O < 0$ or $V_O > V_{DDQ}$		±50	mA
Io	Continuous output current	$V_O = 0$ to V_{DDQ}		±50	mA
	Continuous current through each V _{DDQ} or	r GND		±100	mA
T _{stg}	Storage temperature range		-65	150	°C

Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

			MIN	NOM	MAX	UNIT
V	Output supply voltage, V _{DDQ}		1.7	1.8	1.9	V
V _{CC}	Supply Voltage, AV _{DD} ⁽¹⁾			V_{DDQ}		V
V_{IL}	Low-level input voltage ⁽²⁾	OE, OS			0.35 x V _{DDQ}	V
V_{IH}	High-level input voltage (2)	CK, CK	0.65 x V _{DDQ}			V
I _{OH}	High-level output current (see Figure 2			-9	mA	
I _{OL}	Low-level output current (see Figure 2	2)			9	mA
V_{IX}	Input differential-pair cross voltage		(V _{DDQ} /2) - 0.15		$(V_{DDQ}/2) + 0.15$	V
V_{I}	Input voltage level		-0.3		V _{DDQ} + 0.3	V
V	Input differential voltage (2)	DC	0.3		V _{DDQ} + 0.4	V
V_{ID}	(see Figure 9)	AC	0.6		V _{DDQ} + 0.4	V
T _A	Operating free-air temperature		-40		85	°C

⁽¹⁾ The PLL is turned off and bypassed for test purposes when AV_{DD} is grounded. During this test mode, V_{DDQ} remains within the recommended operating conditions and no timing parameters are specified. V_{ID} is the magnitude of the difference between the input level on CK and the input level on \overline{CK} , see Figure 9 for definition. The CK and

The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

⁽³⁾ This value is limited to 2.5 V maximum.

 $[\]overline{\text{CK}}$, V_{IH} and V_{IL} limits define the dc low and high levels for the logic detect state.

SCAS688D-JUNE 2005-REVISED JULY 2007

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)

	PARAMETER		TEST CONDITIONS	AV_{DD} , V_{DDQ}	MIN	TYP ⁽¹⁾	MAX	UNIT	
V_{IK}	Input		I _I = 18 mA	1.7			-1.2	V	
V	Lligh lovel output voltage		I _{OH} = -100 μA	1.7 to 1.9	V _{DDQ} - 0.2			V	
V _{OH}	High-level output voltage	;	$I_{OH} = -9 \text{ mA}$	1.7	1.1			V	
V	Low lovel output voltage		I _{OL} = 100 μA				0.1	V	
V_{OL}	Low-level output voltage		I _{OL} = 9 mA	1.7			0.6	V	
$I_{O(DL)}$	Low-level output current	, dissabled	$V_{O(DL)} = 100 \text{ mV}, OE = L$	1.7	100			μΑ	
V_{OD}	Differential output voltag	e ⁽¹⁾		1.7	0.5			V	
		CK, CK		1.9			±250		
II	Input current	OE, OS, FBIN, FBIN		1.9			±10	μΑ	
I _{DD(LD)}	Supply current, static (I _D	_{DQ} + I _{ADD})	CK and $\overline{\text{CK}}$ = L	1.9			500	μΑ	
I _{DD}	Supply current, dynamic (see Note ⁽²⁾ for CPD ca	(I _{DDQ} + I _{ADD})	CK and $\overline{\text{CK}}$ = 270 MHz. All outputs are open (not connected to a PCB)	1.9			135	mA	
	(see Note Viol CPD ca	iculation)	All outputs are loaded with 2 pF and 120-Ω termination resistor	1.9			235		
0	Innut conscitores	CK, CK	V V or CND	1.8	2		3		
C _I	Input capacitance	FBIN, FBIN	$V_I = V_{DD}$ or GND	1.8	2		3		
0	Change in input assessed	CK, CK	V V or CND	1.8			0.25	pF	
$C_{I(\Delta)}$	Change in input current	FBIN, FBIN	$V_I = V_{DD}$ or GND	1.8			0.25		

⁽¹⁾ V_{OD} is the magnitude of the difference between the true and complimentary outputs. See Figure 9 for a definition.

Timing Requirements

over recommended operating free-air temperature range (unless otherwise noted)(1)

	PARAMETER	TEST CONDITIONS	MIN	MAX	UNIT
ı	Clock frequency (operating) ⁽¹⁾⁽²⁾		10	400	MHz
t _{CK}	Clock frequency (application) ⁽¹⁾⁽³⁾	AV V - 18V +01V	160	340	MHz
t_{DC}	Duty cycle, input clock	AV_{DD} , $V_{DD} = 1.8 \text{ V} \pm 0.1 \text{ V}$	40%	60%	
tL	Stabiliztion time (4)			12	μs

- (1) The PLL must be able to handle spread spectrum induced skew.
- (2) Operating clock frequency indicates a range over which the PLL must be able to lock, but in which it is not required to meet the other timing parameters (used for low speed system debug).
- (3) Application clock frequency indicates a range over which the PLL must meet all timing parameters.
- (4) Stabilization time is the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal after power up. During normal operation, the stabilization time is also the time required for the integrated PLL circuit to obtain phase lock of its feedback signal to its reference signal when CK and CK go to a logic low state, enter the power-down mode and later return to active operation. CK and CK may be left floating after they have been driven low for one complete clock cycle.

⁽²⁾ Total I_{DD} = I_{DDQ} + I_{ADD} = f_{CK} × C_{PD} × V_{DDQ}, solving for C_{PD} = (I_{DDQ} + I_{ADD})/(f_{CK} × V_{DDQ}) where f_{CK} is the input frequency, V_{DDQ} is the power supply, and C_{PD} is the power dissipation capacitance.

SCAS688D-JUNE 2005-REVISED JULY 2007

Switching Characteristics

over recommended operating free-air temperature range (unless otherwise noted) (see $^{(1)}$) AV_{DD}, V_{DD} = 1.8 V \pm 0.1 V

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT			
t _{en}	Enable time, OE to any Y/Y	See Figure 11			8	ns			
t _{dis}	Disable time, OE to any Y/Y	See Figure 11			8	ns			
t _{jit(cc+)}	Civale to suple period (there(2))	400 MHz to 400 MHz and Figure 4	0		40				
t _{jit(cc-)}	Cycle-to-cycle period jitter ⁽²⁾	160 MHz to 190 MHz, see Figure 4	0		-40	ps			
t _{jit(cc+)}	Civale to suple period (there(2))	400 MHz to 240 MHz and Figure 4	0		30				
t _{jit(cc-)}	Cycle-to-cycle period jitter ⁽²⁾	160 MHz to 340 MHz, see Figure 4	0		-30	ps			
$t_{(\omega)}$	Static phase offset time ⁽³⁾	See Figure 5	-50		50	ps			
t _{(ω)dyn}	Dynamic phase offset time	See Figure 10	-15		15	ps			
t _{sk(o)}	Output clock skew	See Figure 6			35	ps			
	Period jitter (4)(2)	160 MHz to 190 MHz, see Figure 7	-30		30	ne			
t _{jit(per)}	Period jitter (4)(-)	190 MHz to 340 MHz, see Figure 7	-20		20	ps			
	Half-period jitter ⁽⁴⁾⁽²⁾	160 MHz to 190 MHz, see Figure 8	-115						
		190 MHz to 250 MHz, see Figure 8	-70		70	ps			
t _{jit(hper)}		250 MHz to 300 MHz, see Figure 8	-40		40				
		300 MHz to 340 MHz, see Figure 8	-60		60				
	Slew rate, OE	See Figure 3 and Figure 9	0.5						
SR	Input clock slew rate	See Figure 3 and Figure 9	1	2.5	4	V/ns			
	Output clock slew rate ⁽⁵⁾⁽⁶⁾ (no load)	See Figure 3 and Figure 9	1.5	2.5	3				
W	Output differential pair erose valters (7)	CDCU877, See Figure 2	(V _{DDQ} /2) - 0.1	('	V _{DDQ} /2) + 0.1	.,			
V _{OX}	Output differential-pair cross voltage (7)	CDCU877A ⁽⁸⁾ , See Figure 2 (0 - 85°C)	(V _{DDQ} /2) - 0.1	('	V _{DDQ} /2) + 0.1	V			
	SSC modulation frequency		30		33	kHz			
	SSC clock input frequency deviation		0%		-0.5%				
	PLL loop bandwidth		2			MHz			

⁽¹⁾ There are two different terminations that are used with the following tests. The load/board in Figure 2 is used to measure the input and output differential-pair cross voltage only. The load/board in Figure 3 is used to measure all other tests. For consistency, equal length cables must be used.

- This parameter is specifieded by design and characterization.
- (3) Phase static offset time does not include jitter.
- (4) Period jitter, half-period jitter specifications are separate specifications that must be met independently of each other.
- (5) The output slew rate is determined from the IBIS model with a 120-Ω load only.
 (6) To eliminate the impact of input slew rates on static phase offset, the input skew rates of reference clock input CK and CK and feedback clock inputs FBIN and FBIN are recommended to be nearly equal. The 2.5-V/ns skew rates are shown as a recommended target. Compliance with these typical values is not mandatory if it can adequately shown that alternative characteristics meet the requirements of the registered DDR2 DIMM application.
- Output differential-pair cross voltage specified at the DRAM clock input or the test load.
- (8) V_{OX} of CDCU877A is on average 30 mV lower than that of CDCU877 for the same application.

PARAMETER MEASUREMENT INFORMATION

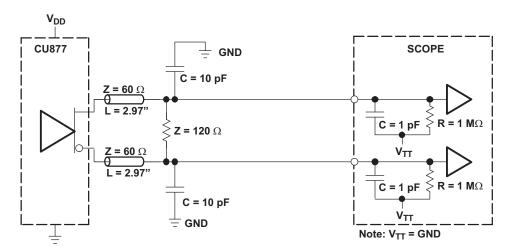


Figure 2. Output Load Test Circuit 1

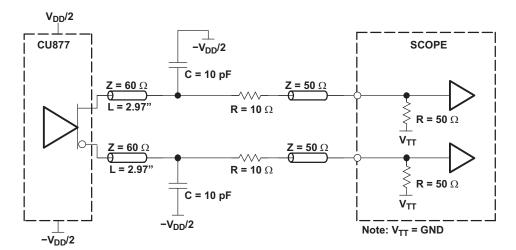


Figure 3. Output Load Test Circuit 2

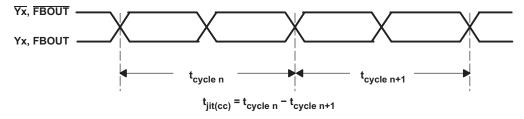


Figure 4. Cycle-To-Cycle Period Jitter

SCAS688D-JUNE 2005-REVISED JULY 2007

1.8-V PHASE LOCK LOOP CLOCK DRIVER

PARAMETER MEASUREMENT INFORMATION (continued)

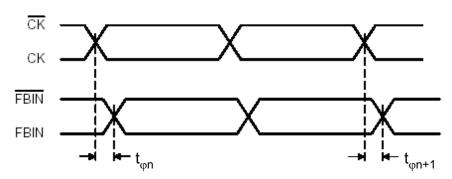


Figure 5. Static Phase Offset

$$t\phi = \frac{\sum_{1}^{n = N} t\phi n}{N}$$

(N is the large number of samples)

(N > 1000 samples)

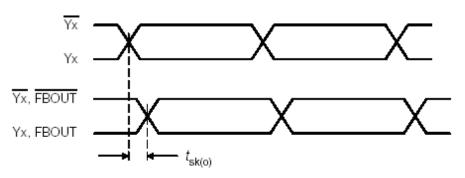


Figure 6. Output Skew

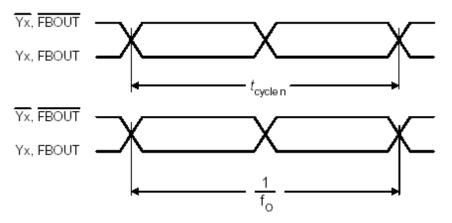


Figure 7. Period Jitter

$$t_{\text{jit(per)}} = t_{\text{cycle n}} - \frac{1}{f_{\text{O}}}$$

(f_O average input frequency measured at CK/\overline{CK}

(2)

(1)

PARAMETER MEASUREMENT INFORMATION (continued)

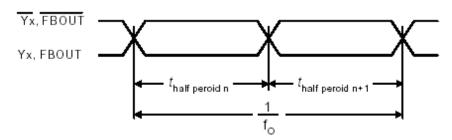


Figure 8. Half-Period Jitter

$$t_{jit(hper)} = t_{half period n} - \frac{1}{2 \times f_{O}}$$

n = any half cycle

(fo average input frequency measured at CK/CK

(3) 80% 80% V_{ID}, V_{OD} Clock Inputs and Outputs, OE 20% 20% $t_{r(i)}$, $t_{r(o)}$ $\mathbf{t}_{\mathsf{f}(\mathsf{i})}, \; \mathbf{t}_{\mathsf{f}(\mathsf{o})}$

Figure 9. Input and Output Slew Rates

$$sIrr_{(i/o)} = \frac{V_{80\%} - V_{20\%}}{t_{r(i/o)}} \qquad sIrf_{(i/o)} = \frac{V_{80\%} - V_{20\%}}{t_{f(i/o)}}$$

$$CK$$

$$CK$$

$$FBIN$$

$$FBIN$$

$$t_{\phi dyn}$$

Figure 10. Dynamic Phase Offset

www.ti.com

SCAS688D-JUNE 2005-REVISED JULY 2007

PARAMETER MEASUREMENT INFORMATION (continued)

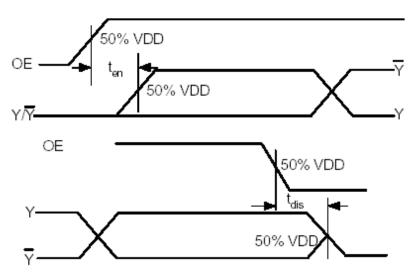
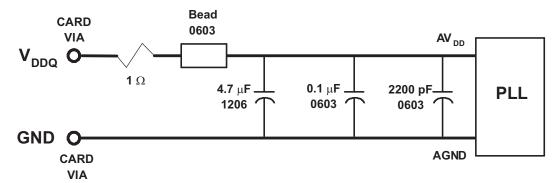



Figure 11. Time Delay Between OE and Clock Output (Y, \overline{Y})

RECOMMENDED AV_{DD} FILTERING

- A. Place the 2200-pF capacitor close to the PLL.
- B. Use a wide trace for the PLL analog power and ground. Connect PLL and capacitors to AGND trace and connect trace to one GND via (farthest from the PLL).
- C. Recommended bead: Fair-Rite PN 2506036017Y0 or equilvalent (0.8 Ω dc maximum, 600 Ω at 100 MHz).

Figure 12. Recommended AV_{DD} Filtering

26-May-2021

www.ti.com

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
CDCU877ANMKR	ACTIVE	NFBGA	NMK	52	1000	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	CDCU877A	Samples
CDCU877ANMKT	ACTIVE	NFBGA	NMK	52	250	RoHS & Green	SNAGCU	Level-3-260C-168 HR	-40 to 85	CDCU877A	Samples
CDCU877ARHAR	ACTIVE	VQFN	RHA	40	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877A	Samples
CDCU877ARHARG4	ACTIVE	VQFN	RHA	40	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877A	Samples
CDCU877ARHAT	ACTIVE	VQFN	RHA	40	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877A	Samples
CDCU877RHAR	ACTIVE	VQFN	RHA	40	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877	Samples
CDCU877RHARG4	ACTIVE	VQFN	RHA	40	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877	Samples
CDCU877RHAT	ACTIVE	VQFN	RHA	40	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877	Samples
CDCU877RHATG4	ACTIVE	VQFN	RHA	40	250	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877	Samples
CDCU877RTBR	ACTIVE	VQFN	RHA	40	2500	RoHS & Green	NIPDAU	Level-3-260C-168 HR	-40 to 85	CDCU877	Samples

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: Til defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

⁽⁴⁾ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

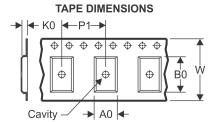
PACKAGE OPTION ADDENDUM

www.ti.com 26-May-2021

(5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

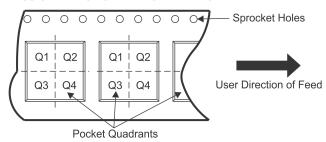
(6) Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

www.ti.com 26-May-2021

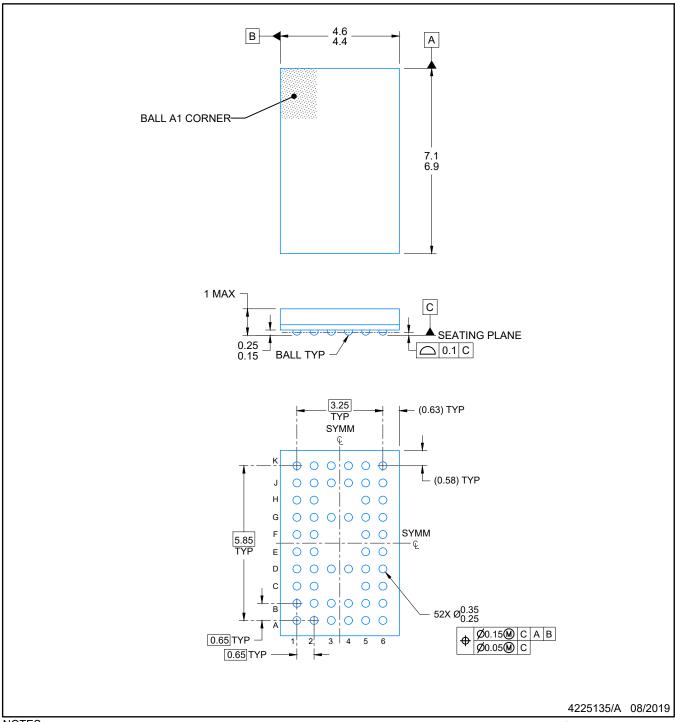

TAPE AND REEL INFORMATION

	Dimension designed to accommodate the component width
B0	Dimension designed to accommodate the component length
K0	Dimension designed to accommodate the component thickness
W	Overall width of the carrier tape
P1	Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

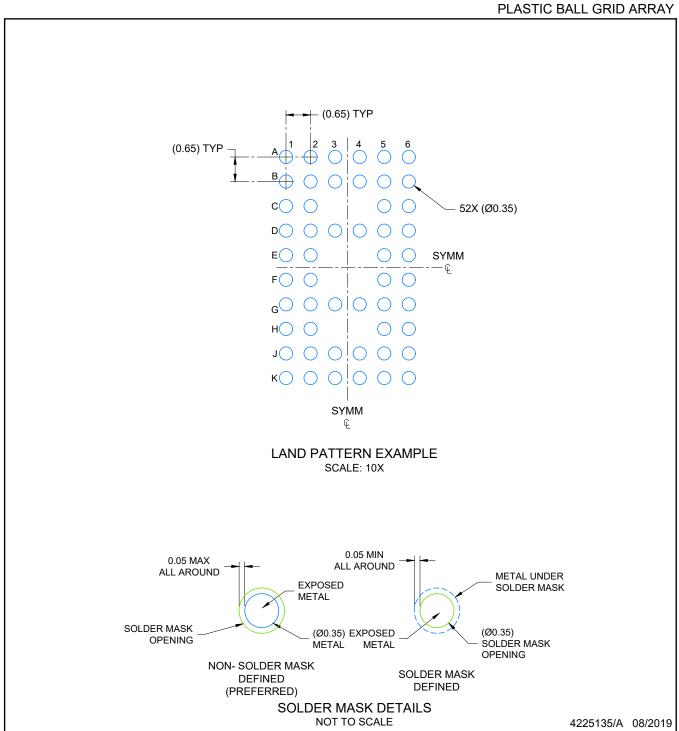
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
CDCU877ANMKR	NFBGA	NMK	52	1000	330.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
CDCU877ANMKT	NFBGA	NMK	52	250	180.0	16.4	4.8	7.3	1.5	8.0	16.0	Q1
CDCU877ARHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
CDCU877ARHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
CDCU877RHAR	VQFN	RHA	40	2500	330.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2
CDCU877RHAT	VQFN	RHA	40	250	180.0	16.4	6.3	6.3	1.1	12.0	16.0	Q2


www.ti.com 26-May-2021

*All dimensions are nominal

Device	Package Type	Package Drawing	g Pins SP		Length (mm)	Width (mm)	Height (mm)
CDCU877ANMKR	NFBGA	NMK	52	1000	336.6	336.6	28.6
CDCU877ANMKT	NFBGA	NMK	52	250	213.0	191.0	55.0
CDCU877ARHAR	VQFN	RHA	40	2500	853.0	449.0	35.0
CDCU877ARHAT	VQFN	RHA	40	250	853.0	449.0	35.0
CDCU877RHAR	VQFN	RHA	40	2500	853.0	449.0	35.0
CDCU877RHAT	VQFN	RHA	40	250	853.0	449.0	35.0

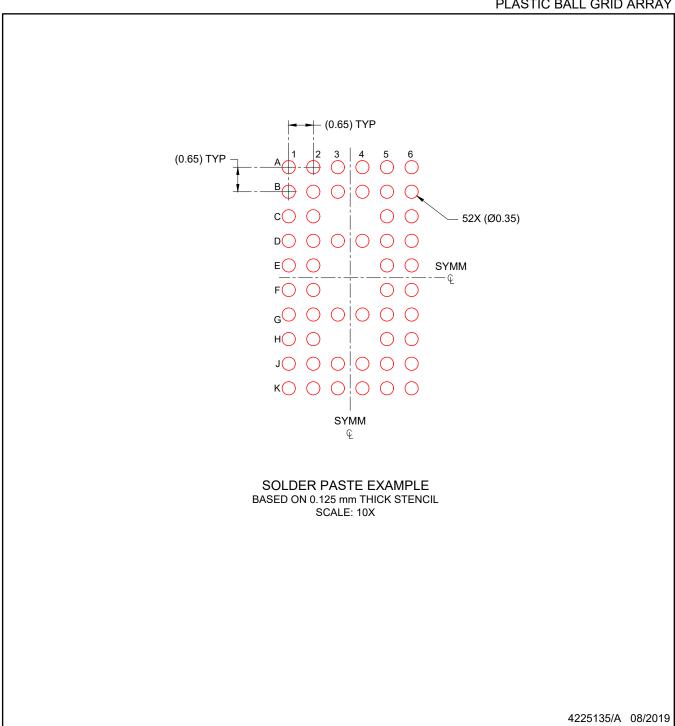
PLASTIC BALL GRID ARRAY



NOTES:

NanoFree is a trademark of Texas Instruments.

- All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
- 2. This drawing is subject to change without notice.

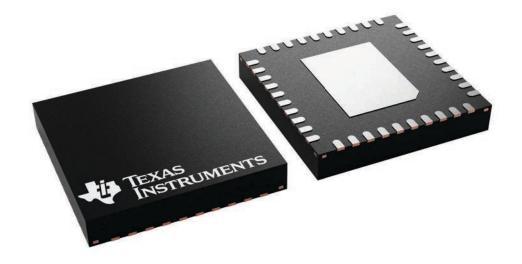


NOTES: (continued)

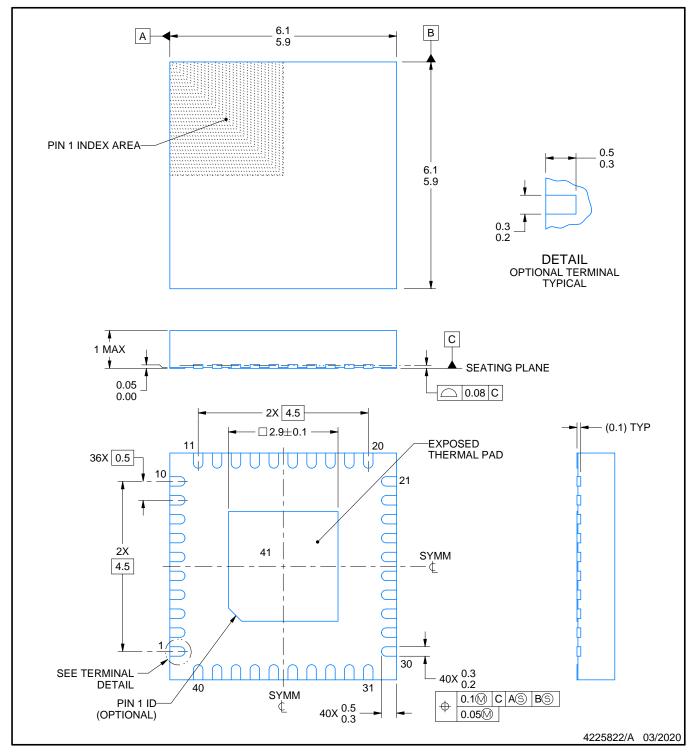
3. Final dimensions may vary due to manufacturing tolerance considerations and also routing constraints. Refer to Texas Instruments Literature number SNVA009 (www.ti.com/lit/snva009).

PLASTIC BALL GRID ARRAY

NOTES: (continued)

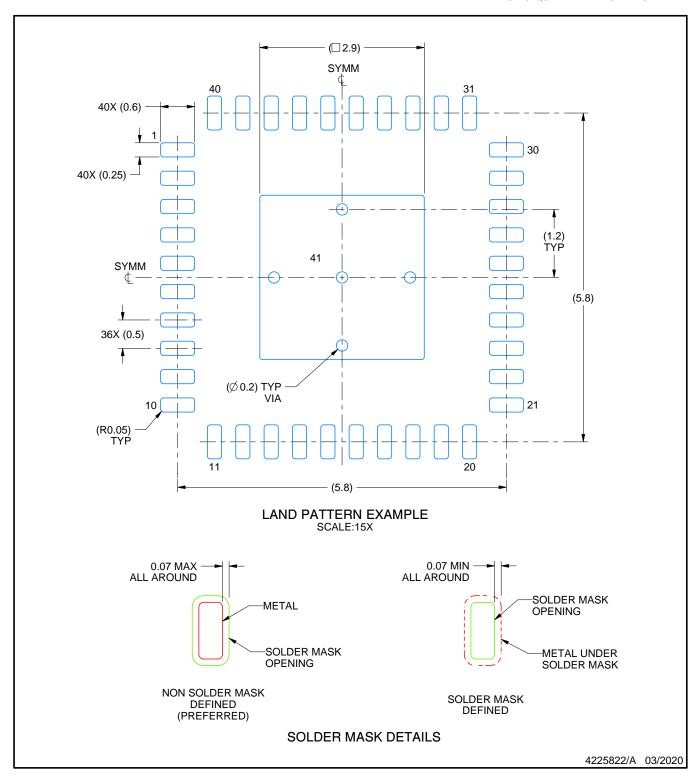

4. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release.

6 x 6, 0.5 mm pitch


PLASTIC QUAD FLATPACK - NO LEAD

This image is a representation of the package family, actual package may vary. Refer to the product data sheet for package details.

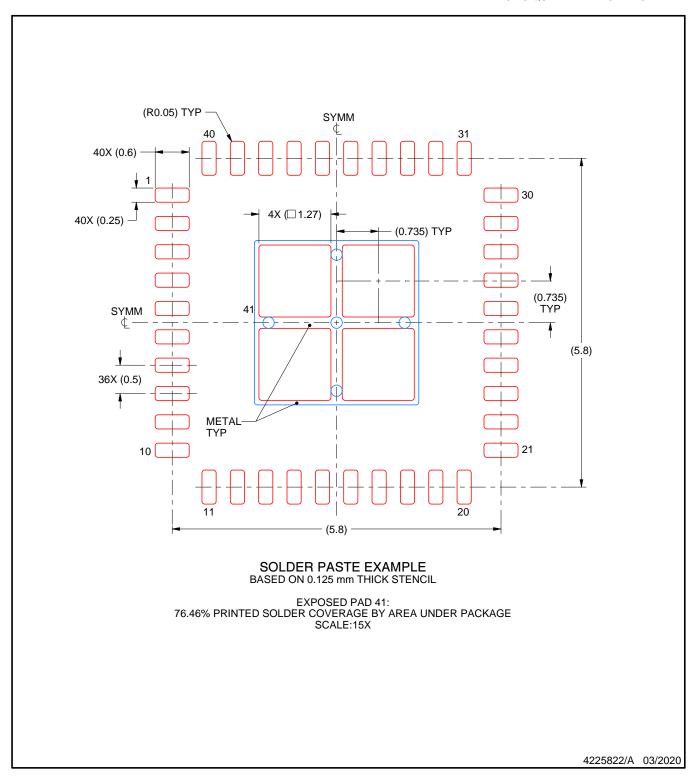
PLASTIC QUAD FLATPACK - NO LEAD



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M.
 2. This drawing is subject to change without notice.
- 3. The package thermal pad must be soldered to the printed circuit board for thermal and mechanical performance.

PLASTIC QUAD FLATPACK - NO LEAD



NOTES: (continued)

- 4. This package is designed to be soldered to a thermal pad on the board. For more information, see Texas Instruments literature number SLUA271 (www.ti.com/lit/slua271).
- 5. Vias are optional depending on application, refer to device data sheet. If any vias are implemented, refer to their locations shown on this view.

PLASTIC QUAD FLATPACK - NO LEAD

NOTES: (continued)

6. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATASHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale (https://www.ti.com/legal/termsofsale.html) or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated