

InvenSense Inc.

1745 Technology Drive, San Jose, CA 95110 U.S.A. Tel: +1 (408) 988-7339 Fax: +1 (408) 988-8104 Website: www.invensense.com Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

IDG-2020 & IXZ-2020 Datasheet Revision 1.1

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

CONTENTS

1	ı	DOCUMENT INFORMATION	3
	1.1	1 REVISION HISTORY	3
	1.2	2 Purpose and Scope	4
	1.3	PRODUCT OVERVIEW	4
	1.4	4 APPLICATIONS	4
2	ı	FEATURES	5
	2.1	1 Sensors	5
	2.2		
	2.3		
	2.4		
	2.5		
	2.6		
3	_	ELECTRICAL CHARACTERISTICS	
_			
	3.1		
	3.2		
	3.3		
	3.4		
	3.5		
	3.6		
4	1	APPLICATIONS INFORMATION	12
	4.1	1 PIN OUT AND SIGNAL DESCRIPTION	12
	4.2	2 Typical Operating Circuit	13
	4.3	BILL OF MATERIALS FOR EXTERNAL COMPONENTS	13
5	ı	FUNCTIONAL OVERVIEW	14
	5.1	1 Block Diagram	1.4
	5.2		
	5.3		
	5.4		
	5.5		
	5.6		
	5.7		
	5.8		
	5.9		
	5.1		
6		DIGITAL INTERFACE	
•			
_	6.1	1 I ² C Serial Interface	
/			
	7.1		21
	7.2	2 LOGIC LEVELS	21
8	-	ASSEMBLY	22
	8.1	1 Orientation of Axes	
	8.2		
	8.3		
9		REFERENCE	
11		ENVIRONMENTAL COMPLIANCE	26

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Document Information 1

1.1 **Revision History**

Date	Revision	Description			
09/23/2011	1.0	Initial Release			
09/29/2016	1.1	Updated section 1, added section 9			

Document Number: DS-000152 Revision: 1.1

Release Date: 9/29/2016

1.2 Purpose and Scope

This document is a product specification, providing a description, specifications, and design related information for the Digital Still Camera & Digital Video Camera Optical Image Stabilization (OIS) two axis gyroscopes, IDG-2020™ and IXZ-2020™. Both devices are housed in small 3x3x0.90mm QFN package and are pin and function compatible.

For references to register map and descriptions of individual registers, please refer to the IDG-2020 and IXZ-2020 Register Map and Register Descriptions document.

1.3 Product Overview

The IDG-2020 and IXZ-2020 are single-chip, digital output, 2 Axis MEMS gyroscope ICs which feature a 512-byte FIFO. In applications such as Electronic Image Stabilization, the gyro output is sampled at a fast rate, e.g. 1 KHz, but is only needed at the video frame rate (ex: 30 fps). The FIFO can store the samples within a frame, lower the traffic on the serial bus interface, and reduce power consumption by allowing the system processor to burst read sensor data and then go into a low-power mode. The FSYNC (Frame Sync) input allows precise timing to be achieved with Video Frame Sync at the host level for read out of the frame data.

The OIS gyros include specific features to enhance OIS performance including a narrow programmable full-scale range of ± 31.25 dps, ± 62.5 dps, ± 125 dps, and ± 250 dps, fast sampling of the gyro output at up to 32 kHz, low phase delay including fast 20 MHz read out through SPI interface, very low Rate noise at 0.0065 dps/VHz and extremely low power consumption at 2.9 mA for 2 axis operation. Factory-calibrated initial sensitivity reduces production-line calibration requirements.

Other industry-leading features include on-chip 16-bit ADCs, programmable digital filters, a precision clock with 1% drift from -40°C to 85°C, an embedded temperature sensor, and programmable interrupts. The device features I²C and SPI serial interfaces, a VDD operating range of 1.71V to 3.6V, and a separate digital IO supply, VDDIO from 1.71V to 3.6V.

By leveraging its patented and volume-proven Nasiri-Fabrication platform, which integrates MEMS wafers with companion CMOS electronics through wafer-level bonding, InvenSense has driven the gyro package size down to a footprint and thickness of 3 mm x 3 mm x 0.90 mm (16-pin QFN), to provide a very small yet high performance low cost package. The device provides high robustness by supporting 10,000g shock reliability.

Sensor Axes for each device

Device	IDG-2020	IXZ-2020
Gyro Axes	X, Y	X, Z

1.4 Applications

- Optical Image Stabilization for Digital Still Camera and Video Cameras
- Electronic Image Stabilization for video jitter compensation

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

2 Features

The IDG-2020 and IXZ-2020 MEMS gyroscopes include a wide range of features:

2.1 Sensors

- Monolithic angular rate sensor (gyros) integrated circuit
- Available in XY (IDG-2020) and XZ (IXZ-2020) versions
- Digital-output temperature sensor
- External sync signal connected to the FSYNC pin supports image, video and GPS synchronization
- Factory calibrated scale factor
- High cross-axis isolation via proprietary MEMS design
- 10,000*q* shock tolerant

2.2 Digital Output

- Fast Mode (400 kHz) I²C serial interface
- 1 MHz SPI serial interface for full read/write capability
- 20 MHz SPI to read gyro sensor & temp sensor data.
- 16-bit ADCs for digitizing sensor outputs
- User-programmable full-scale-range of ±31.25 dps, ±62.5 dps, ±125 dps, and ±250 dps

2.3 Data Processing

- The total data set obtained by the device includes gyroscope data, temperature data, and the one-bit external sync signal connected to the FSYNC pin.
- FIFO allows burst read, reduces serial bus traffic and saves power on the system processor.
- FIFO can be accessed through both I²C and SPI interfaces.
- Programmable interrupt
- Programmable low-pass filters

2.4 Clocking

On-chip timing generator clock frequency ±1% drift over full temperature range

2.5 Power

- VDD supply voltage range of 1.71V to 3.6V
- Flexible VDDIO reference voltage allows for multiple I²C and SPI interface voltage levels
- Power consumption for two axes active: 2.9 mA
- Sleep mode: 5 μA
- Each axis can be individually powered down

2.6 Package

- 3 mm x 3 mm x 0.90 mm footprint and maximum thickness 16-pin QFN plastic package
- MEMS structure hermetically sealed at wafer level
- RoHS and Green compliant

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

3 **Electrical Characteristics**

3.1 **Sensor Specifications**

Typical Operating Circuit of Section 4.2, VDD = 2.5V, VDDIO = 1.8V, T_A=25°C.

Parameter	Conditions	Min	Typical	Max	Unit	Notes
GYRO SENSITIVITY						
Full-Scale Range	FS_SEL=0		±31.25		dps	1
	FS_SEL=1		±62.5		dps	
	FS_SEL=2		±125		dps	
	FS_SEL=3		±250		dps	
Sensitivity Scale Factor	FS_SEL=0		262		LSB/(dps)	
	FS_SEL=1		131		LSB/(dps)	
	FS_SEL=2		65.5		LSB/(dps)	
	FS_SEL=3		32.8		LSB/(dps)	
Gyro ADC Word Length			16		bits	
Sensitivity Scale Factor Tolerance	25°C		±3		%	1
Sensitivity Scale Factor Variation Over Temperature	-40°C to +85°C		±0.025		%/°C	2
Nonlinearity	Best fit straight line; 25°C		±0.1		%	2
Cross-Axis Sensitivity			±2		%	1
GYRO ZERO-RATE OUTPUT (ZRO)					l	
Initial ZRO Tolerance	25°C		±5		dps	1
ZRO Variation Over Temperature	-40°C to +85°C		±25		dps	2
Power Supply Sensitivity (1-10 Hz)	Sine wave, 100 mVpp; VDD = 2.2V		0.2		dps	
Power Supply Sensitivity (10-250 Hz)	Sine wave, 100 mVpp; VDD = 2.2V		0.2		dps	
Power Supply Sensitivity (250 Hz – 100 kHz)	Sine wave, 100 mVpp; VDD – 2.2V		4		dps	
Linear Acceleration Sensitivity	Static		0.1		dps/g	
GYRO NOISE PERFORMANCE	FS_SEL=0					
Total RMS Noise	DLPFCFG=2 (100 Hz)		0.075		dps-rms	1
Low-frequency RMS noise	Bandwidth 1 Hz to10 Hz		0.025		dps-rms	
Rate Noise Spectral Density	At 10 Hz		0.0065		dps/vHz	
GYRO MECHANICAL						
Mechanical Frequency			27		kHz	1
GYRO START-UP TIME						
ZRO Settling	DLPFCFG=0, to ±1º/s of Final		35		ms	
TEMPERATURE SENSOR					•	2
Range			-40 to 85		°C	
Sensitivity	Untrimmed		321.4		LSB/°C	
Room-Temperature Offset	35°C		0		LSB	
Linearity			±0.2		°C	
TEMPERATURE RANGE					•	2
Specification Temperature Range		-40		85	°C	

- 1. Tested in production
- Derived from validation or characterization of parts, not guaranteed in production. 2.
- 3. Peak-Peak noise data is based on measurement of RMS noise in production and at 99% normal distribution

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Electrical Specifications 3.2

Typical Operating Circuit of Section 4.2, VDD = 2.5V, VDDIO = 1.8V, T_A = 25°C.

Parameters	Conditions	Min	Typical	Max	Units	Notes
VDD POWER SUPPLY						
Operating Voltage Range		1.71		3.6	V	2
Power-Supply Ramp Rate	Monotonic ramp. Ramp rate is 10% to 90% of the final value	1		100	ms	2
Normal Operating Current	Two Axes Active		2.9		mA	1
Sleep Mode Current			5		μΑ	1
VDDIO REFERENCE VOLTAGE (must be regulated)						2
Voltage Range		1.71		3.6	V	
Power-Supply Ramp Rate	Monotonic ramp. Ramp rate is 10% to 90% of the final value	1		100	ms	
Normal Operating Current	10 pF load, 5 MHz data rate. Does not include pull up resistor current draw as that is system dependent		300		μΑ	
START-UP TIME FOR REGISTER READ/WRITE			20		ms	2
I ² C ADDRESS	AD0 = 0 AD0 = 1		1101000 1101001			
DIGITAL INPUTS (FSYNC, ADO, SCLK, SDI, /CS)						2
V _{IH} , High Level Input Voltage		0.7*VDDIO			V	
V _{IL} , Low Level Input Voltage				0.3*VDDIO	V	
C _I , Input Capacitance			< 5		pF	
DIGITAL OUTPUT (INT, SDO)						2
V _{OH} , High Level Output Voltage	R _{LOAD} =1 MΩ	0.9*VDDIO			V	
V _{OL1} , Low Level Output Voltage	R_{LOAD} =1 $M\Omega$			0.1*VDDIO	٧	
V _{OLINT1} , INT Low-Level Output Voltage	OPEN=1, 0.3 mA sink current			0.1	٧	
Output Leakage Current	OPEN=1		100		nA	
t _{INT} , INT Pulse Width	LATCH_INT_EN=0		50		μs	

- 1. Tested in production
- Derived from validation or characterization of parts, not guaranteed in production.

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Electrical Specifications, continued 3.3

Typical Operating Circuit of Section 4.2, VDD = 2.5V, VDDIO = 1.8V, T_A =25°C.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C I/O (SCL, SDA)				•		2
VIL, LOW Level Input Voltage			-0.5V to 0.3*VDDIO		V	
V _{IH} , HIGH Level Input Voltage			0.7*VDDIO to VDDIO + 0.5V		V	
V _{hys} , Hysteresis			0.1*VDDIO		V	
V _{OL1} , LOW Level Output Voltage	3 mA sink current		0 to 0.4		V	
I _{OL} , LOW Level Output Current	V _{OL} = 0.4V V _{OL} = 0.6V		3 6		mA mA	
Output Leakage Current			100		nA	
t_{of} , Output Fall Time from V_{IHmax} to V_{ILmax}	C _b bus capacitance in pf		20+0.1C _b to 250		ns	
C _I , Capacitance for Each I/O pin			< 10		pF	
INTERNAL CLOCK SOURCE				•		2
	Fchoice=0,1,2 SMPLRT_DIV=0		32		kHz	
Sample Rate	Fchoice=3; DLPFCFG=0 or 7 SMPLRT_DIV=0		8		kHz	
	Fchoice=3; DLPFCFG=1,2,3,4,5,6; SMPLRT_DIV=0		1		kHz	
Clock Frequency Initial Tolerance	CLK_SEL=0, 6; 25°C	-2		2	%	
	CLK_SEL=1,2,3,4,5; 25°C	-1		1	%	
Frequency Variation over Temperature	CLK_SEL=0,6		-10 to 10		%	
	CLK_SEL=1,2,3,4,5		±1		%	
PLL Settling Time	CLK_SEL=1,2,3,4,5		4		ms	

- 1. Tested in production
- 2. Derived from validation or characterization of parts, not guaranteed in production.
- Power-Supply Ramp Rates are defined as the time it takes for the voltage to rise from 10% to 90% of the final value. VDD and VDDIO must be monotonic ramps.

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

I²C Timing Characterization

Typical Operating Circuit of Section 4.2, VDD = 2.5V, VDDIO = 1.8V, T_A=25°C.

Parameters	Conditions	Min	Typical	Max	Units	Notes
I ² C TIMING	I ² C FAST-MODE					
f _{SCL} , SCL Clock Frequency		0		400	kHz	
t _{HD.STA} , (Repeated) START Condition Hold Time		0.6			μs	
t _{LOW} , SCL Low Period		1.3			μs	
t _{HIGH} , SCL High Period		0.6			μs	
t _{SU.STA} , Repeated START Condition Setup Time		0.6			μs	
t _{HD.DAT} , SDA Data Hold Time		0			μs	
t _{SU.DAT} , SDA Data Setup Time		100			ns	
t _r , SDA and SCL Rise Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	
t _f , SDA and SCL Fall Time	C _b bus cap. from 10 to 400 pF	20+0.1C _b		300	ns	
t _{SU.STO} , STOP Condition Setup Time		0.6			μs	
t _{BUF} , Bus Free Time Between STOP and START Condition		1.3			μs	
C _b , Capacitive Load for each Bus Line			< 400		pF	
t _{VD.DAT} , Data Valid Time				0.9	μs	
t _{VD.ACK} , Data Valid Acknowledge Time				0.9	μs	

- 1. Tested in production
- Derived from validation or characterization of parts, not guaranteed in production.

Figure 1. I²C Bus Timing Diagram

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

SPI Timing Characterization 3.5

Typical Operating Circuit of Section 4.2, VDD = 2.5V, VDDIO = 1.8V, T_A = 25°C.

Parameters	Conditions	Min	Typical	Max	Units	Notes
SPI TIMING (fSCLK = 1 MHz) R/W						
f _{SCLK} , SCLK Clock Frequency				1	MHz	1
				20	MHz	2
t _{LOW} , SCLK Low Period		400			ns	
t _{HIGH} , SCLK High Period		400			ns	
t _{SU.CS} , CS Setup Time		8			ns	
t _{HD.CS} , CS Hold Time		500			ns	
t _{SU.SDI} , SDI Setup Time		11			ns	
t _{HD.SDI} , SDI Hold Time		7			ns	
t _{VD.SDO} , SDO Valid Time	C _{load} = 20 pF			100	ns	
t _{HD.SDO} , SDO Hold Time	C _{load} = 20 pF	4				
t _{DIS.SDO} , SDO Output Disable Time				10	ns	

- 1. Tested in production
- Derived from validation or characterization of parts, not guaranteed in production.

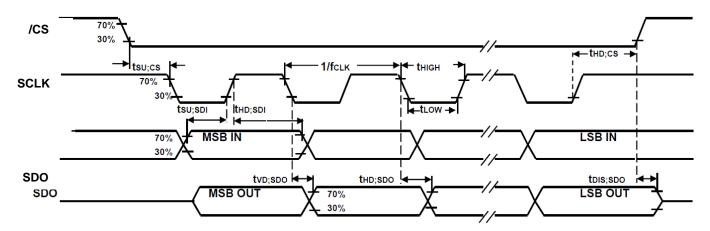


Figure 2. SPI Bus Timing Diagram

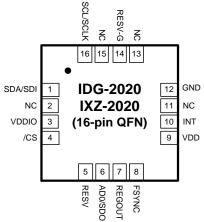
Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Absolute Maximum Ratings 3.6

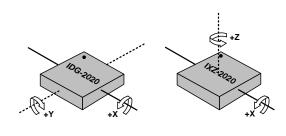
Stress above those listed as "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to the absolute maximum ratings conditions for extended periods may affect device reliability.

Absolute Maximum Ratings

Parameter	Rating
Supply Voltage, VDD	-0.5V to 4.0V
VDDIO Input Voltage Level	-0.5V to 4.0V
REGOUT	-0.5V to 2V
Input Voltage Level (ADO, FSYNC)	-0.5V to VDD
SCL, SDA, INT (SPI enable)	-0.5V to VDD
SCL, SDA, INT (SPI disable)	-0.5V to VDD
Acceleration (Any Axis, unpowered)	10,000 <i>g</i> for 0.2 ms
Operating Temperature Range	-40°C to +85°C
Storage Temperature Range	-40°C to +125°C
Electrostatic Discharge (ESD) Protection	2 kV (HBM); 250V (MM)
Latch-up	JEDEC Class II (2),125°C



Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016


Applications Information

4.1 Pin Out and Signal Description

Pin Number 3x3x0.90mm	Pin Name	Pin Description
1	SDA/SDI	I ² C serial data (SDA); SPI serial data input (SDI)
3	VDDIO	Digital I/O supply voltage.
4	/cs	SPI chip select (0=SPI mode, 1= I ² C mode)
5	RESV	Reserved. Do not connect.
6	AD0 / SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)
7	REGOUT	Regulator filter capacitor connection
8	FSYNC	Frame synchronization digital input. Connect to GND if not used.
9	VDD	Power supply voltage and Digital I/O supply voltage
10	INT	Interrupt digital output (totem pole or open-drain)
12	GND	Power supply ground
14	RESV-G	Reserved. Connect to Ground.
16	SCL/SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
2, 11, 13, 15	NC	Not internally connected. May be used for PCB trace routing.

Orientation of Axes of Sensitivity and Polarity of Rotation

Figure 3. QFN Package and Orientation

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Typical Operating Circuit 4.2

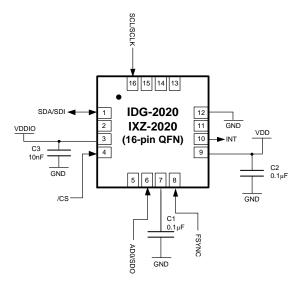


Figure 4. Typical Operating Circuit

4.3 **Bill of Materials for External Components**

Component	Label	Specification	Quantity
Regulator Filter Capacitor	C1	Ceramic, X7R, 0.1 μF ±10%, 2V	1
VDD Bypass Capacitor	C2	Ceramic, X7R, 0.1 μF ±10%, 4V	1
VDDIO Bypass Capacitor	С3	Ceramic, X7R, 10 nF ±10%, 4V	1

Document Number: DS-000152

Revision: 1.1

Release Date: 9/29/2016

5 Functional Overview

5.1 Block Diagram

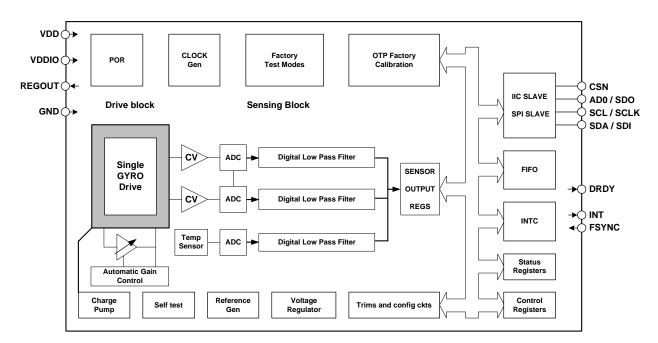


Figure 5. Block Diagram

5.2 Overview

Both the IDG-2020 and IXZ-2020 are comprised of the following key blocks / functions:

- Two-axis MEMS rate gyroscope sensors with 16-bit ADCs and signal conditioning
- Available in two axis XY and XZ configurations
- I²C and SPI serial communications interfaces
- Clocking
- Sensor Data Registers
- FIFO
- Interrupts
- Digital-Output Temperature Sensor
- Bias and LDO

5.3 Two-Axis MEMS Gyroscope with 16-bit ADCs and Signal Conditioning

Both the IDG-2020 and IXZ-2020 consist of a single structure vibratory MEMS rate gyroscope, which detects rotation about the X&Y or X&Z axes, respectively. When the gyro is rotated about any of the sense axes, the Coriolis Effect causes a vibration that is detected by a capacitive pick off. The resulting signal is amplified, demodulated, and filtered to produce a voltage that is proportional to the angular rate. This voltage is digitized using individual on-chip 16-bit Analog-to-Digital Converters (ADCs) to sample each axis. The chip features a programmable full-scale range of the gyro sensors of ± 31.25 dps, ± 62.5 dps, ± 125 dps, and ± 250 dps. The FSR range is optimized for image stabilization applications where the narrower range improves hand jitter detection accuracy via the 16 bit ADCs. User-selectable low-pass filters enable a wide range of cut-off frequencies. The ADC sample rate can be programmed to 32 kHz, 8 kHz, 1 kHz, 500 Hz, 333.3 Hz, 250 Hz, 200 Hz, 166.7 Hz, 142.9 Hz, or 125 Hz.

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

5.4 I²C and SPI Serial Communications Interface

The IDG-2020 and IXZ-2020 have both I²C and SPI serial interfaces. The device always acts as a slave when communicating to the system processor. The logic level for communications to the master is set by the voltage on the VDDIO pin. The LSB of the of the I²C slave address is set by the ADO pin. The I²C and SPI protocols are described in more detail in Section 6.

5.5 Internal Clock Generation

Both the IDG-2020 and IXZ-2020 use a flexible clocking scheme, allowing for a variety of internal clock sources for the internal synchronous circuitry. This synchronous circuitry includes the signal conditioning and ADCs, various control circuits, and registers.

Allowable internal sources for generating the internal clock are:

- An internal relaxation oscillator
- PLL (gyroscope based clock)

In order for the gyroscope to perform to spec, the PLL must be selected as the clock source. When the internal 20 MHz oscillator is chosen as the clock source, the device can operate while having the gyroscopes disabled. However, this is only recommended if the user wishes to use the internal temperature sensor in this mode.

5.6 Sensor Data Registers

The sensor data registers contain the latest gyro and temperature data. They are read-only registers, and are accessed via the Serial Interface. Data from these registers may be read anytime, however, the interrupt function may be used to determine when new data is available.

5.7 FIFO

Both the IDG-2020 and IXZ-2020 contain a 512-byte FIFO register that is accessible via the both the I²C and SPI Serial Interfaces. The FIFO configuration register determines what data goes into it, with possible choices being gyro data, temperature readings, and FSYNC input. A FIFO counter keeps track of how many bytes of valid data are contained in the FIFO. The FIFO register supports burst reads. The interrupt function may be used to determine when new data is available.

5.8 Interrupts

Interrupt functionality is configured via the Interrupt Configuration register. Items that are configurable include the INT pin configuration, the interrupt latching and clearing method, and triggers for the interrupt. Items that can trigger an interrupt are (1) Clock generator locked to new reference oscillator (used when switching clock sources), (2) new data is available to be read (from the FIFO and Data registers), and (3) FIFO overflow. The interrupt status can be read from the Interrupt Status register.

5.9 Digital-Output Temperature Sensor

An on-chip temperature sensor and ADC are used to measure the device's die temperature. The readings from the ADC can be read from the FIFO or the Sensor Data registers.

5.10 Bias and LDO

The bias and LDO section generates the internal supply and the reference voltages and currents required by the IDG-2020 and IXZ-2020. Its two inputs are unregulated VDD of 1.71V to 3.6V and a VDDIO logic reference supply voltage of 1.71V to 3.6V. The LDO output is bypassed by a $0.1 \, \mu F$ capacitor at REGOUT.

Document Number: DS-000152 Revision: 1 1

Release Date: 9/29/2016

6 Digital Interface

6.1 I²C Serial Interface

The internal registers and memory of the IDG-2020 and IXZ-2020 can be accessed using the I²C interface.

Serial Interface

Pin Number Pin Name Pin Description		Pin Description
3	VDDIO	Digital I/O supply voltage.
6	AD0 / SDO	I ² C Slave Address LSB (AD0); SPI serial data output (SDO)
16	SCL / SCLK	I ² C serial clock (SCL); SPI serial clock (SCLK)
1	SDA / SDI	I ² C serial data (SDA); SPI serial data input (SDI)

6.1.1 I²C Interface

I²C is a two-wire interface comprised of the signals serial data (SDA) and serial clock (SCL). In general, the lines are open-drain and bi-directional. In a generalized I²C interface implementation, attached devices can be a master or a slave. The master device puts the slave address on the bus, and the slave device with the matching address acknowledges the master.

Both the IDG-2020 and IXZ-2020 always operate as a slave device when communicating to the system processor, which thus acts as the master. SDA and SCL lines typically need pull-up resistors to VDD. The maximum bus speed is 400 kHz.

The slave address of the device is b110100X which is 7 bits long. The LSB bit of the 7-bit address is determined by the logic level on pin AD0. This allows two IDG-2020 or IXZ-2020 devices to be connected to the same I²C bus. When used in this configuration, the address of the one of the devices should be b1101000 (pin AD0 is logic low) and the address of the other should be b1101001 (pin AD0 is logic high). The I²C address is stored in WHO_AM_I register.

I²C Communications Protocol

START (S) and STOP (P) Conditions

Communication on the I²C bus starts when the master puts the START condition (S) on the bus, which is defined as a HIGH-to-LOW transition of the SDA line while SCL line is HIGH (see figure below). The bus is considered to be busy until the master puts a STOP condition (P) on the bus, which is defined as a LOW to HIGH transition on the SDA line while SCL is HIGH (see Figure 6).

Additionally, the bus remains busy if a repeated START (Sr) is generated instead of a STOP condition.

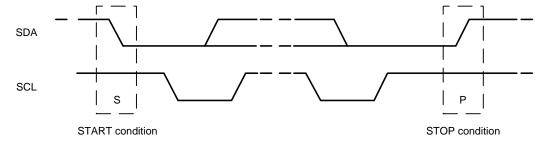


Figure 6. START and STOP Conditions

Document Number: DS-000152 Revision: 1.1

Release Date: 9/29/2016

Data Format / Acknowledge

I²C data bytes are defined to be 8 bits long. There is no restriction to the number of bytes transmitted per data transfer. Each byte transferred must be followed by an acknowledge (ACK) signal. The clock for the acknowledge signal is generated by the master, while the receiver generates the actual acknowledge signal by pulling down SDA and holding it low during the HIGH portion of the acknowledge clock pulse.

If a slave is busy and is unable to transmit or receive another byte of data until some other task has been performed, it can hold SCL LOW, thus forcing the master into a wait state. Normal data transfer resumes when the slave is ready, and releases the clock line (refer to Figure 7).

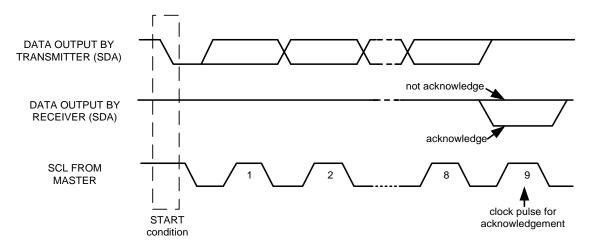


Figure 7. Acknowledge on the I²C Bus

Communications

After beginning communications with the START condition (S), the master sends a 7-bit slave address followed by an 8th bit, the read/write bit. The read/write bit indicates whether the master is receiving data from or is writing to the slave device. Then, the master releases the SDA line and waits for the acknowledge signal (ACK) from the slave device. Each byte transferred must be followed by an acknowledge bit. To acknowledge, the slave device pulls the SDA line LOW and keeps it LOW for the high period of the SCL line. Data transmission is always terminated by the master with a STOP condition (P), thus freeing the communications line. However, the master can generate a repeated START condition (Sr), and address another slave without first generating a STOP condition (P). A LOW to HIGH transition on the SDA line while SCL is HIGH defines the stop condition. All SDA changes should take place when SCL is low, with the exception of start and stop conditions.

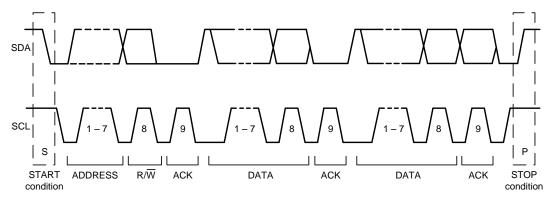


Figure 8. Complete I²C Data Transfer

Document Number: DS-000152 Revision: 1.1

Release Date: 9/29/2016

To write the internal IDG-2020 or IXZ-2020 registers, the master transmits the start condition (S), followed by the I²C address and the write bit (0). At the 9th clock cycle (when the clock is high), the device acknowledges the transfer. Then the master puts the register address (RA) on the bus. After the device acknowledges the reception of the register address, the master puts the register data onto the bus. This is followed by the ACK signal, and data transfer may be concluded by the stop condition (P). To write multiple bytes after the last ACK signal, the master can continue outputting data rather than transmitting a stop signal. In this case, the device automatically increments the register address and loads the data to the appropriate register. The following figures show single and two-byte write sequences.

Single-Byte Write Sequence

Master	S	AD+W		RA		DATA		Р
Slave			ACK		ACK		ACK	

Burst Write Sequence

Mas	ter	S	AD+W		RA		DATA		DATA		Р
Slav	e			ACK		ACK		ACK		ACK	

To read the internal device registers, the master sends a start condition, followed by the I²C address and a write bit, and then the register address that is going to be read. Upon receiving the ACK signal from the device, the master transmits a start signal followed by the slave address and read bit. As a result, the device sends an ACK signal and the data. The communication ends with a not acknowledge (NACK) signal and a stop bit from master. The NACK condition is defined such that the SDA line remains high at the 9th clock cycle. The following figures show single and two-byte read sequences.

Single-Byte Read Sequence

Master	S	AD+W		RA		S	AD+R			NACK	Р
Slave			ACK		ACK			ACK	DATA		

Burst Read Sequence

Master	S	AD+W		RA		S	AD+R			ACK		NACK	Р
Slave			ACK		ACK			ACK	DATA		DATA		

Document Number: DS-000152 Revision: 1.1

Release Date: 9/29/2016

I²C Terms

Signal	Description
S	Start Condition: SDA goes from high to low while SCL is high
AD	Slave I ² C address
W	Write bit (0)
R	Read bit (1)
ACK	Acknowledge: SDA line is low while the SCL line is high at the 9 th clock cycle
NACK	Not-Acknowledge: SDA line stays high at the 9 th clock cycle
RA	The internal register address
DATA	Transmit or received data
Р	Stop condition: SDA going from low to high while SCL is high

6.1.2 SPI interface

SPI is a 4-wire synchronous serial interface that uses two control and two data lines. Both the IDG-2020 and IXZ-2020 always operate as a Slave device during standard Master-Slave SPI operation. With respect to the Master, the Serial Clock output (SCLK), the Data Output (SDO), and the Data Input (SDI) are shared among the Slave devices. The Master generates an independent Chip Select (/CS) for each Slave device; /CS goes low at the start of transmission and goes back high at the end. The Serial Data Output (SDO) line, remains in a high-impedance (high-z) state when the device is not selected, so it does not interfere with any active devices.

SPI Operational Features

- 1. Data is delivered MSB first and LSB last
- 2. Data is latched on rising edge of SCLK
- 3. Data should be transitioned on the falling edge of SCLK
- 4. SCLK frequency is 1 MHz max for SPI in full read/write capability mode. When the SPI frequency is set to 20 MHz, its operation is limited to reading sensor registers only.
- 5. SPI read and write operations are completed in 16 or more clock cycles (two or more bytes). The first byte contains the SPI Address, and the following byte(s) contain(s) the SPI data. The first bit of the first byte contains the Read/Write bit and indicates the Read (1) or Write (0) operation. The following 7 bits contain the Register Address. In cases of multiple-byte Read/Writes, data is two or more bytes:

SPI Address format

MSB							LSB
R/W	Α6	A5	A4	А3	A2	A1	Α0

SPI Data format

MSB							LSB
D7	D6	D5	D4	D3	D2	D1	D0

6. Supports Single or Burst Read/Writes.

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

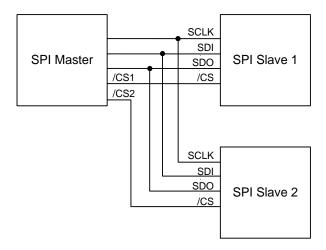


Figure 9. SPI Master/Slave Configuration

Each SPI slave requires its own Chip Select (/CS) line. SDO, SDI, and SCLK lines are shared. Only one /CS line is active (low) at a time ensuring that only one slave is selected at a time. The /CS lines of other slaves are held high which causes their respective SDO pins to be high-Z.

Document Number: DS-000152 Revision: 1 1

Revision: 1.1 Release Date: 9/29/2016

7 Serial Interface Considerations

7.1 Supported Interfaces

Both the IDG-2020 and IXZ-2020 support I²C and SPI communication.

7.2 Logic Levels

The I/O logic levels are set to VDDIO. VDDIO may be set to be equal to VDD or to another voltage, such that it is between 1.71V and 3.6V at all times. Both I^2C and SPI communication support VDDIO.

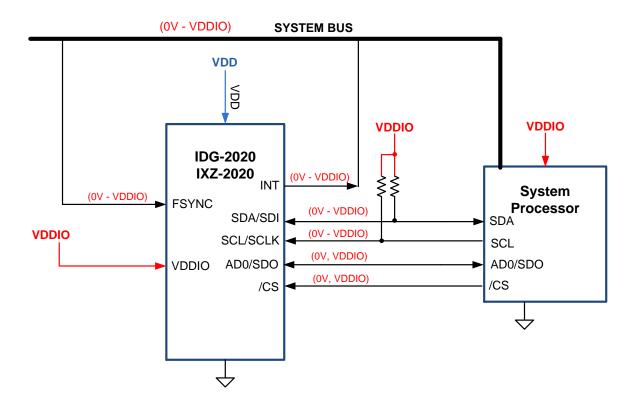


Figure 10.

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

8 **Assembly**

This section provides general guidelines for assembling InvenSense Micro Electro-Mechanical Systems (MEMS) gyros packaged in Quad Flat No leads package (QFN) surface mount integrated circuits.

8.1 **Orientation of Axes**

The diagram below shows the orientation of the axes of sensitivity and the polarity of rotation. Note the pin 1 identifier in the figure.

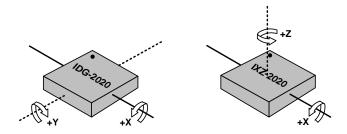
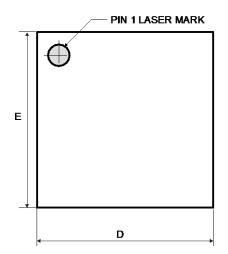



Figure 11. Orientation of Axes of Sensitivity and Polarity of Rotation

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

8.2 **Package Dimensions**

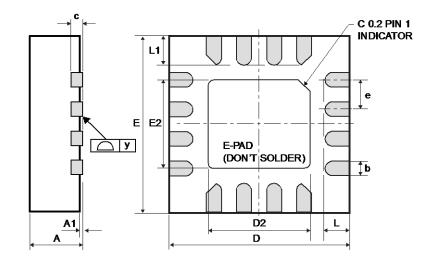


Figure 12. Package dimensions

Dimen	sions in I	Millimeter	·s
Dimension	Min	Nom	Max
Α	0.85	0.90	0.95
A1	0.00	0.02	0.05
b	0.18	0.25	0.30
С		0.2 ref	
D	2.90	3.00	3.10
D2	1.65	1.70	1.75
Е	2.90	3.00	3.10
E2	1.45	1.50	1.55
е		0.50	
L	0.35	0.40	0.45
L1	0.45	0.50	0.55
У	0.000		0.075

8.2.1 **Package Thickness Tolerance**

The table below shows the typical and maximum package thicknesses.

arro typroda darror modamirom p	acrage amerares
Тур	Max
0.90 mm	0.95 mm

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

Product Marking Specification 8.3

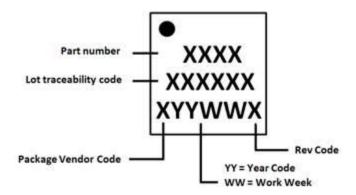


Figure 13. Product Marketing Specification

rigare 13.1 rodace marketing specification								
	Dimensions in Millimeters							
Dimension	Description	Nominal						
Nom	ns							
Е	Pad Pitch	0.50						
В	Pad Width	0.25						
L	Pad Length (1-4. 9-12)	0.40						
L1	Pad Length (5-8, 13-16)	0.50						
D	Package Width	3.00						
Е	Package Length	3.00						
I/O La	nd Design Dimensions (Guidelir	nes)						
D2	Epad Width	1.70						
E2	Epad Height	1.50						
С	Land Width	0.35						
Tout	Outward Extension	0.20						
Tin	Inward Extension	0.05						

Notes:

- Solder Screen Option shown for exposed pad with four 0.35×0.35 pads. 1.
- 2. Other options are (1) No solder on exposed pad, or (2) fully soldered exposed pad

Document Number: DS-000152 Revision: 1.1 Release Date: 9/29/2016

9 Reference

Please refer to "InvenSense MEMS Handling Application Note (AN-IVS-0002A-00)" for the following information:

- Manufacturing Recommendations
 - **Assembly Guidelines and Recommendations**
 - PCB Design Guidelines and Recommendations
 - **MEMS Handling Instructions**
 - **ESD Considerations** 0
 - **Reflow Specification**
 - **Storage Specifications** 0
 - Package Marking Specification 0
 - Tape & Reel Specification
 - Reel & Pizza Box Label 0
 - Packaging 0
 - Representative Shipping Carton Label 0
- Compliance
 - **Environmental Compliance**
 - **DRC Compliance**
 - **Compliance Declaration Disclaimer**

Document Number: DS-000152 Revision: 1.1

Release Date: 9/29/2016

10 Environmental Compliance

The IDG-2020 and IXZ-2020 are RoHS and Green compliant.

The IDG-2020 and IXZ-2020 are in full environmental compliance as evidenced in report HS-Ixx-2020A, Materials Declaration Data Sheet.

Environmental Declaration Disclaimer:

InvenSense believes this environmental information to be correct but cannot guarantee accuracy or completeness. Conformity documents for the above component constitutes are on file. InvenSense subcontracts manufacturing and the information contained herein is based on data received from vendors and suppliers, which has not been validated by InvenSense.

This information furnished by InvenSense is believed to be accurate and reliable. However, no responsibility is assumed by InvenSense for its use, or for any infringements of patents or other rights of third parties that may result from its use. Specifications are subject to change without notice. InvenSense reserves the right to make changes to this product, including its circuits and software, in order to improve its design and/or performance, without prior notice. InvenSense makes no warranties, neither expressed nor implied, regarding the information and specifications contained in this document. InvenSense assumes no responsibility for any claims or damages arising from information contained in this document, or from the use of products and services detailed therein. This includes, but is not limited to, claims or damages based on the infringement of patents, copyrights, mask work and/or other intellectual property rights.

Certain intellectual property owned by InvenSense and described in this document is patent protected. No license is granted by implication or otherwise under any patent or patent rights of InvenSense. This publication supersedes and replaces all information previously supplied. Trademarks that are registered trademarks are the property of their respective companies. InvenSense sensors should not be used or sold in the development, storage, production or utilization of any conventional or mass-destructive weapons or for any other weapons or life threatening applications, as well as in any other life critical applications such as medical equipment, transportation, aerospace and nuclear instruments, undersea equipment, power plant equipment, disaster prevention and crime prevention equipment.

InvenSense® is a registered trademark of InvenSense, Inc. IDG-2020™ and IXZ-2020™ are trademarks of InvenSense, Inc.

©2013—2016 InvenSense, Inc. All rights reserved.

