FSA4480

USB Type-C Analog Audio Switch with Protection Function

FSA4480 is a high performance USB Type-C port multimedia switch which supports analog audio headsets. FSA4480 allows the sharing of a common USB Type-C port to pass USB2.0 signal, analog audio, sideband use wires and analog microphone signal. FSA4480 also supports high voltage on SBU port and USB port on USB Type-C receptacle side.

Features

- Power Supply: $\mathrm{V}_{\mathrm{CC}}, 2.7 \mathrm{~V}$ to 5.5 V
- USB High Speed (480 Mbps) Switch:
- $\mathrm{SDD}_{21}-3 \mathrm{~dB}$ bandwidth: 950 MHz
- $3 \Omega \mathrm{R}_{\mathrm{ON}}$ Typical
- Audio Switch
- Negative Rail Capability: -3 V to +3 V
- THD+N = $-110 \mathrm{~dB} ; 1 \mathrm{~V}_{\mathrm{RMS}}, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, 32 \mathrm{~W}$ Load
- $1 \Omega \mathrm{R}_{\mathrm{ON}}$ Typical
- High Voltage Protection
- 20 V DC Tolerance on Connector Side Pins
- Over Voltage Protection: $\mathrm{V}_{\mathrm{TH}}=5 \mathrm{~V}$ (Typ)
- OMTP and CTIA Pinout Support
- Support Audio Sense Path
- 25-Ball WLCSP Package ($2.24 \mathrm{~mm} \times 2.28 \mathrm{~mm}$)

Applications

- Mobile Phone, Tablet, Notebook PC, Media Player

Figure 1. Application Block Diagram

$$
\text { ON Semiconductor }{ }^{\circledR}
$$

www.onsemi.com

ORDERING INFORMATION

Part Number	Package	Marking
FSA4480UCX	WLCSP25 (Pb-Free)	$6 D$

PIN CONFIGURATION

Figure 2. Pin Assignment (Top Through View)

Table 1. PIN DESCRIPTIONS

No.	Pin	Name	Description
1	A5	VCC	Power Supply (2.7 to 5.5 V)
2	B5	GND	Chip ground
3	D5	DP_R	USB/Audio Common Connector
4	D4	DN_L	USB/Audio Common Connector
5	E5	DP	USB Data (Differential +)
6	E4	DN	USB Data (Differential -)
7	C5	R	Audio - Right Channel
8	C4	L	Audio - Left Channel
9	A3	SBU1	Sideband use wire 1
10	A2	SBU2	Sideband use wire 2
11	C1	MIC	Microphone signal
12	B2	AGND	Audio signal ground
13	B3	AGND	Audio signal ground
14	E2	SENSE	Audio ground reference output
15	C3	INT	$\mathrm{I}^{2} \mathrm{C}$ Interrupt output, active low (open drain)
16	D2	CC_IN	Audio accessory attachment detection input
17	D1	GSBU1	Audio sense path 1 to headset jack GND
18	E1	GSBU2	Audio sense path 2 to headset jack GND
19	C2	DET	Push-pull output. When CC_IN > 1.5 V, DET is low and CC_IN <1.2 V, DET is high
20	D3	SCL	$\mathrm{I}^{2} \mathrm{C}$ clock
21	E3	SDA	${ }^{2}{ }^{2} \mathrm{C}$ data
22	B1	SBU2_H	Host Side Sideband Use Wire 2
23	A1	SBU1_H	Host Side Sideband Use Wire 1
24	A4	ENN	Chip Enable, active low, internal pull-down by $470 \mathrm{k} \Omega$
25	B4	ADDR	$\mathrm{I}^{2} \mathrm{C}$ slave address pin

FSA4480

Table 2. ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter		Min.	Max.	Unit
V_{CC}	Supply Voltage from VCC		-0.5	6.5	V
$\mathrm{V}_{\mathrm{CC} \text { _IN }}$	$\mathrm{V}_{\text {CC_I }}$, to GND		-0.5	20	V
$\mathrm{V}_{\text {SW_C }}$	$\mathrm{V}_{\mathrm{DP} \text { _ }}$ to GND, $\mathrm{V}_{\mathrm{DN} \text { _L }}$ to GND		-3.5	20	V
$V_{\text {SW_USB }}$	V_{DP} to $\mathrm{GND}, \mathrm{V}_{\mathrm{DN}}$ to GND		-0.5	6.5	V
V ${ }_{\text {SW_Audio }}$	V_{L} to GND, V_{R} to GND		-3.6	6.5	V
V ${ }_{\text {V_SBU/GSBU }}$	$\mathrm{V}_{\mathrm{SBU} 1}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{SBU} 2}$ to GND, $\mathrm{V}_{\mathrm{GSBU} 1}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{GSBU} 1}$ to GND		-0.5	20	V
$\mathrm{V}_{\text {VSBU_H }}$	Vsbu1_H to GND, Vsbu2_H to GND		-0.5	6.5	V
$\mathrm{V}_{1 / \mathrm{O}}$	SENSE, MIC, DET, INT, to GND		-0.5	6.5	V
$\mathrm{V}_{\text {CNTRL }}$	Control Input Voltage	SDA, SCL, ENN, ADDR	-0.5	6.5	V
ISW_Audio	Switch I/O Current, Audio Path		-250	250	mA
ISw_USB	Switch I/O Current, USB Path		-	100	mA
Isw_mic	Switch I/O Current, MIC to SBU1 or SBU2		-	50	mA
Isw_SBU	Switch I/O Current, SBUx to SBUx_H		-	50	mA
ISW_SENSE	Switch I/O Current, SENSE to GSBU1 or GSBU2		-	100	mA
ISW_AGND	Switch I/O Current, AGND to SBU1 or SBU2		-	500	mA
$\mathrm{IIK}^{\text {I }}$	DC Input Diode Current		-50	-	mA
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	Connector side and power pins: VCC, SBU1, SBU2, DP_R, DN_L, GSBU1, GSBU2, CC_IN	4	-	kV
ESD	Human Body Model, ANSI/ESDA/JEDEC JS-001-2012	Host side pins: the rest pins	2	-	kV
ESD	Charged Device Model, JEDEC: JESD22-C101		1	-	kV
$\mathrm{T}_{\text {A }}$	Absolute Maximum Operating Temperature		-40	85	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage Temperature		-65	150	${ }^{\circ} \mathrm{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Table 3. RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min.	Typ.	Max.	Unit
POWER					
V_{CC}	Supply Voltage	2.7	-	5.5	V
USB SWITCH					
V ${ }_{\text {SW_USB }}$	V_{DP} to $\mathrm{GND}, \mathrm{V}_{\mathrm{DN}}$ to GND, $\mathrm{V}_{\text {DP_R }}$ to $\mathrm{GND}, \mathrm{V}_{\text {DN_L }}$ to GND	0	-	3.6	V

AUDIO SWITCH

$V_{\text {SW_Audio }}$	$\mathrm{V}_{\mathrm{DP} \text { _ }}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{DN} \text { _ }}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{L}}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{R}}$ to GND	-3.6	-	3.6	V
MIC SWITCH					
VVSBU_MIC	$\mathrm{V}_{\text {SBU1 }}$ to GND, $\mathrm{V}_{\text {SBU2 }}$ to GND, $\mathrm{V}_{\text {MIC }}$ to GND	0	-	3.6	V

SENSE SWITCH

$V_{\text {VGSBU_SEN }}$	$V_{\text {GSBU1 }}$ to $G N D, V_{\text {GSBU2 }}$ to $G N D, V_{\text {SENSE }}$ to GND	0	-	3.6	V

SBU TO SBUX_H SWITCH

V VGSbu	$\mathrm{V}_{\mathrm{SBU1}}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{SBU2}}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{SBU1} 1 \mathrm{H}}$ to $\mathrm{GND}, \mathrm{V}_{\mathrm{SBU2} \text { _ }}$ to	0	-	3.6	V
CC_IN PIN					
$\mathrm{V}_{\text {CC_I }}$	$\mathrm{V}_{\text {CC_IN, }}$ to GND	0	-	5.5	V
CONTROL VOLTAGE (ENN/SDA/SCL)					
V_{IH}	Input Voltage High	1.3	-	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low	-	-	0.5	V

OPERATING TEMPERATURE

T_{A}	Ambient Operating Temperature	-40	25	+85	${ }^{\circ} \mathrm{C}$

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Table 4. DC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	Min.	Typ.	Max.	Unit
$I_{\text {cc }}$	Supply Current	USB switches on, SBUx to SBUx_H switches on	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-	-	65	$\mu \mathrm{A}$
		Audio switches on, MIC switch on and Audio GND switch on		-	-	60	$\mu \mathrm{A}$
Iccz	Quiescent Current	$\mathrm{ENN}=\mathrm{L}, 04 \mathrm{H}^{\prime} \mathrm{b} 7=0$		-	-	5	$\mu \mathrm{A}$

USB/AUDIO COMMON PINS: DP/R, DN_L

loz	Off Leakage Current of DP_R and DN_L	DN_L, DP_R = -3 V to 3.6 V	V_{Cc} : 2.7 V to 5.5 V	-3.0	-	3.0	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current of DP_R and DN_L	DN_L, DP_R = 0 V to 3.6 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
Vov_TRIP	Input OVP Lockout	Rising edge	V_{CC} : 2.7 V to 5.5 V	4.5	5	5.3	V
V ${ }_{\text {OV_HYS }}$	Input OVP Hysteresis			-	0.3	-	V

AUDIO SWITCH

IoN	On Leakage Current of Audio Switch	DN_L, DP_R $=-3 \mathrm{~V}$ to 3.0 V , DP, DN, R, L = Float	V_{Cc} : 2.7 V to 5.5 V	-2.5	-	2.5	$\mu \mathrm{A}$
IofF	Power-Off Leakage Current of L and R	$\mathrm{L}, \mathrm{R}=0 \mathrm{~V}$ to 3 V ; DP_R, DN_L = Float	Power off	-1.0	-	1.0	$\mu \mathrm{A}$
RON_AUDIO	Audio Switch On Resistance	$\mathrm{I}_{\mathrm{SW}}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=-3 \mathrm{~V}$ to 3 V	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-	1.0	2.1	Ω
$\mathrm{R}_{\text {SHUNT }}$	Pull Down Resistor on R/L Pin when Audio Switch is Off	$\mathrm{L}=\mathrm{R}=3 \mathrm{~V}$		6	10	14	$\mathrm{k} \Omega$

USB SWITCH

ION	On Leakage Current of USB Switch	DN_L, DP_R = 0 V to 3.6 V , DP, ${ }^{-}$DN, R, $\mathrm{L}=$ Float	$\mathrm{V}_{\mathrm{Cc}}: 2.7 \mathrm{~V}$ to 5.5 V	-3.0	-	3.0	$\mu \mathrm{A}$
l OZ	Off Leakage Current of DP and DN	$\mathrm{DN}, \mathrm{DP}=0 \mathrm{~V}$ to 3.6 V		-3.0	-	3.0	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current of DP and DN	$\mathrm{DN}, \mathrm{DP}=0 \mathrm{~V}$ to 3.6 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {ON_USB }}$	USB Switch On Resistance	$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA}, \mathrm{~V}_{\mathrm{SW}}=0.4 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-	3.0	5.2	Ω

SENSE SWITCH

Ion	Sense Path Leakage Current	GSBUx $=0 \mathrm{~V}$ to 1 V , SENSE is floating	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-2.0	-	2.0	$\mu \mathrm{A}$
Ron sense	SENSE Switch On Resistance	I Sw $=100 \mathrm{~mA}, \mathrm{Vsw}=1 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	0.20	0.30	0.40	Ω
l Oz	Off Leakage Current of SENSE	Sense $=0 \mathrm{~V}$ to 1.0 V		-2.0	-	2.0	$\mu \mathrm{A}$
	Off Leakage Current of GSBUx	GSBUx $=0 \mathrm{~V}$ to 1.0 V		-2.0	-	2.0	$\mu \mathrm{A}$
		GSBUx $=1 \mathrm{~V}$ to 3.6 V		-3.0	-	3.0	
loff	Power-Off Leakage Current of SENSE	Sense $=0 \mathrm{~V}$ to 1.0 V	Power off	-2.0	-	2.0	$\mu \mathrm{A}$
	Power-Off Leakage Current of GSBUx	$\mathrm{GSBUx}=0 \mathrm{~V}$ to 3.6 V		-3.0	-	3.0	

Table 4. DC ELECTRICAL CHARACTERISTICS (continued)
($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	Min.	Typ.	Max.	Unit
SENSE SWITCH							
$\mathrm{V}_{\text {OV_TRIP }}$	Input OVP Lockout on GSBUx	Rising edge	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	4.5	5	5.3	V
VOV_HYS	Input OVP Hysteresis of GSBUx			-	0.3	-	V

SBUX PINS

loz	Off Leakage Current of SBUx	SBUx $=0 \mathrm{~V}$ to 3.6 V	V_{CC} : 2.7 V to 5.5 V	-3.0	-	3.0	$\mu \mathrm{A}$
loff	Power-Off Leakage Current Port SBUx	SBUx $=0 \mathrm{~V}$ to 3.6 V	Power off	-3.0	-	3.0	$\mu \mathrm{A}$
$\mathrm{V}_{\text {OV_TRIP }}$	Input OVP Lockout	Rising edge	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	4.5	5	5.3	V
VOV_HYS	Input OVP Hysteresis			-	0.3	-	V

MIC SWITCH

IoN	On Leakage Current of MIC Switch	SBUx $=0 \mathrm{~V}$ to 3.6 V , MIC is floating	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-3.0	-	3.0	$\mu \mathrm{A}$
l OZ	Off Leakage Current of MIC	MIC $=0 \mathrm{~V}$ to 3.6 V		-1.0	-	1.0	$\mu \mathrm{A}$
IofF	Power Off Leakage Current of MIC	MIC $=0 \mathrm{~V}$ to 3.6 V	Power off	-1.0	-	1.0	$\mu \mathrm{A}$
RON_MIC	MIC Switch On Resistance	$\mathrm{Isw}=30 \mathrm{~mA}, \mathrm{Vsw}=3.6 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	1.7	3.0	3.9	Ω

SBUX_H SWITCH

Ion	On Leakage Current of SBUx_H Switch	SBUx = 0 V to 3.6 V , SBUx_H is floating	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-3.0	-	3.0	$\mu \mathrm{A}$
l_{0}	Off Leakage of SBUx_H	SBUx_H =0 V to 3.6 V		-1	-	1	$\mu \mathrm{A}$
loff	Power Off Leakage Current of SBUx H	SBUx_H = 0 V to 3.6 V	Power off	-1.0	-	1.0	$\mu \mathrm{A}$
$\mathrm{R}_{\text {On_SBU }}$	SBUx_H Switch On Resistance	Isw $=30 \mathrm{~mA}, \mathrm{~V}_{\text {SW }}=0 \mathrm{~V}$ to 3.6 V	V_{Cc} : 2.7 V to 5.5 V	1.5	3.0	3.5	Ω

AUDIO GROUND SWITCH: PIN: AGND TO SBUX

RON_AGND	AGND Switch On Resistance	$I_{\text {SOURCE }}=100 \mathrm{~mA}$ on SBUx	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	30	50	90	$\mathrm{~m} \Omega$

CC_IN PIN

$\mathrm{V}_{\text {TH_L }}$	Input Low Threshold		$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-	1.2	-	V
$\mathrm{V}_{\text {TH_H }}$	Input High Threshold			-	1.5	-	V
I_{N}	Input Leakage of CC_IN	CC_IN $=0 \mathrm{~V}$ to 5.5 V		-	-	1.0	$\mu \mathrm{A}$

INT, DET PINS

V_{OH}	Output High for DET	$\mathrm{lo}=-2 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	1.5	1.8	2	V
$\mathrm{V}_{\text {OL }}$	Output Low for DET and INT	$\mathrm{lo}=2 \mathrm{~mA}$		-	-	0.4	V

Table 4. DC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	Min.	Typ.	Max.	Unit
ADDR PIN							
V_{IH}	Input voltage High		$\mathrm{V}_{\mathrm{Cc}}: 2.7 \mathrm{~V}$ to 5.5 V	1.3	-	-	V
V_{IL}	Input voltage Low			-	-	0.45	V
I_{N}	Control Input Leakage	ADDR $=0 \mathrm{~V}$ to V_{CC}		-1	-	1	$\mu \mathrm{A}$

ENN PIN

V_{IH}	Input Voltage High	V_{CC} : 2.7 V to 5.5 V	1.3	-	-	V
$\mathrm{V}_{\text {IL }}$	Input Voltage Low		-	-	0.45	V
R_{PD}	Internal Pull Down Resistor		-	470	-	k Ω

SDS, SCL PINS

$\mathrm{V}_{\text {ILI2C }}$	Low-Level Input Voltage		$\mathrm{V}_{\mathrm{CC}}: 2.7 \mathrm{~V}$ to 5.5 V	-	-
$\mathrm{V}_{\text {IHI2C }}$	High-Level Input Voltage			V	
$\mathrm{I}_{\text {I2C }}$	Input Current of SDA and SCL Pins	SCL/SDA $=0 \mathrm{~V}$ to 3.6 V	1.2	-	-

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

Table 5. AC ELECTRICAL CHARACTERISTICS
($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	Min.	Typ.	Max.	Unit

AUDIO SWITCH

$\mathrm{t}_{\text {delay }}$	Audio Switch Turn On Delay Time	$\begin{aligned} & \mathrm{DP}_{1} \mathrm{R}=\mathrm{DN} \mathrm{~L}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	65	-	$\mu \mathrm{s}$
trise	Audio Switch Turn On Rising Time (Note 1)	$\begin{aligned} & \mathrm{DP}_{1} \mathrm{R}=\mathrm{DN} \mathrm{~L}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		-	240	-	$\mu \mathrm{S}$
$\mathrm{t}_{\text {OFF }}$	Audio Switch Turn Off Time	$\begin{aligned} & \mathrm{DP}_{1} \mathrm{R}=\mathrm{DN} \mathrm{~L}=1 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=32 \Omega \end{aligned}$		-	15	-	$\mu \mathrm{S}$
$\mathrm{X}_{\text {TALK }}$	Cross Talk (Adjacent)	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-100	-	dB
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	600	-	MHz
$\mathrm{O}_{\text {IRR }}$	Off Isolation	$\begin{aligned} & \mathrm{F}=1 \mathrm{kHz}, \mathrm{RL}=50 \Omega, \\ & \mathrm{CL}=0 \mathrm{pF}, \mathrm{Vsw}=1 \mathrm{VRMS} \end{aligned}$		-	-100	-	dB
THD + N	Total Harmonic Distortion + Noise Performance with A-weighting Filter	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=2 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-110	-	dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=32 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=1 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-110	-	dB
		$\begin{aligned} & R_{\mathrm{L}}=16 \Omega, \mathrm{f}=20 \mathrm{~Hz} \sim 20 \mathrm{kHz}, \\ & \mathrm{~V}_{\mathrm{SW}}=0.5 \mathrm{~V}_{\mathrm{RMS}} \end{aligned}$		-	-108	-	dB

USB SWITCH

t_{ON}	USB Switch Turn-on Time	$\begin{aligned} & \mathrm{DP} _\mathrm{R}=\mathrm{DN} \mathrm{~L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	60	-	$\mu \mathrm{s}$
tofF	USB Switch Turn -off Time	$\begin{aligned} & \mathrm{DP} _\mathrm{R}=\mathrm{DN} _\mathrm{L}=1.5 \mathrm{~V}, \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \end{aligned}$		-	15	-	$\mu \mathrm{S}$
BW	-3 dB Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	850	-	MHz
	$\mathrm{SDD}_{21}-3 \mathrm{~dB}$ Bandwidth			-	950	-	
$\mathrm{O}_{\text {IRR }}$	Off Isolation between DP, DN and Common Node Pins	$\begin{aligned} & \mathrm{f}=1 \mathrm{kHz}, \mathrm{RL}=50 \Omega, \mathrm{CL}=0 \mathrm{pF}, \\ & \text { Vsw }=1 \text { VRMS } \end{aligned}$		-	-100	-	dB
tove	DP_R and DN_L pins OVP Response Time	V w $=3.5 \mathrm{~V}$ to 5.5 V		-	1	1.5	$\mu \mathrm{s}$

MIC/AUDIO GROUND SWITCH

$\mathrm{t}_{\text {delay_MIC }}$	MIC Switch Turn On Delay Time	$\mathrm{SBUx}=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	100	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {rise_MIC }}$	MIC Switch Turn On Rising Time (Note 1)			-	250	-	
$\mathrm{t}_{\text {delay_AGND }}$	AGND Switch Turn On Time	SBUx pulled up to 0.5 V by 16Ω, AGND connect to GND	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	100	-	$\mu \mathrm{s}$
$\mathrm{trise}_{\text {_AGND }}$	AGND Switch Turn On Rising Time (Note 1)			-	1500	-	
toff_mic	MIC Switch Turn Off Time	SBUx $=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$		-	15	-	
toFF_Audio GND	AGND Switch Turn Off Time	SBUx: Isource = 10 mA , clamp to 2.5 V		-	15	-	
BW	MIC Switch Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	50	-	MHz

Table 5. AC ELECTRICAL CHARACTERISTICS (continued)
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified.)

Symbol	Parameter	Condition	Power	Min.	Typ.	Max.	Unit
SBUX_H SWITCH							
t_{ON}	SBUx_H Switch Turn On Time	SBUx $=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	-	35	-	$\mu \mathrm{s}$
toff	SBUx_H Switch Turn Off Time			-	15	-	
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	50		MHz
tovp	SBUx Pins OVP Response Time	$\mathrm{Vsw}=3.5 \mathrm{~V}$ to 5.5 V		-	0.5	1	$\mu \mathrm{s}$

SENSE SWITCH

$\mathrm{t}_{\text {delay }}$	Sense Switch Turn On Delay Time	GSBUx $=1 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega$	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	65	-	$\mu \mathrm{s}$
$\mathrm{t}_{\text {rise }}$	Sense Switch Turn On Rising Time (Note 1)			-	260	-	$\mu \mathrm{S}$
toff	Sense Switch Turn Off Time			-	15	-	us
tovp	GSBUx Pins OVP Response Time	$\mathrm{V}_{\text {SW }}$: 3.5 V to 5.5 V		-	0.7	1.5	$\mu \mathrm{s}$
BW	Bandwidth	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		-	150	-	MHz

DET DELAY

t DELAY_DET	DET Response Delay	Transition from 0 to 1.8 V	$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	1	-	$\mu \mathrm{S}$
		Transition from 1.8 to 0 V		-	5	-	

1. Turn on timing can be controlled by $\mathrm{I}^{2} \mathrm{C}$ register.

Table 6. $1^{2} \mathrm{C}$ SPECIFICATION
$\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}\right.$ to $5.5, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C} . \mathrm{T}_{\mathrm{A}}$ (Typ.) $=25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Fast Mode		
		Min.	Max.	Unit
$\mathrm{f}_{\text {SCL }}$	I²C_SCL Clock Frequency		400	kHz
$\mathrm{t}_{\text {HD }}$ S STA	Hold Time (Repeated) START Condition	0.6		μs
t LOW	Low Period of I2C_SCL Clock	1.3		μs
$\mathrm{t}_{\text {HIGH }}$	High Period of ${ }^{2} \mathrm{C}$ _SCL Clock	0.6		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; STA }}$	Set-up Time for Repeated START Condition	0.6		$\mu \mathrm{S}$
$\mathrm{t}_{\mathrm{HD} ; \text { DAT }}$	Data Hold Time (Note 2)	0	0.9	$\mu \mathrm{s}$
$\mathrm{t}_{\text {SU; DAT }}$	Data Set-up Time (Note 3)	100		ns
tr_{r}	Rise Time of ${ }^{2} \mathrm{C}$ _SDA and ${ }^{2} \mathrm{C}$ _SCL Signals (Note 3)	$20+0.1 C_{b}$	300	ns
t_{f}	Fall Time of $\mathrm{I}^{2} \mathrm{C}$ _SDA and $\mathrm{I}^{2} \mathrm{C}$ _SCL Signals (Note 3)	$20+0.1 C_{b}$	300	ns
tSU; STO	Set-up Time for STOP Condition	0.6		$\mu \mathrm{S}$
$t_{\text {BUF }}$	Bus-Free Time between STOP and START Conditions	1.3		$\mu \mathrm{s}$
$\mathrm{t}_{\text {SP }}$	Pulse Width of Spikes that Must Be Suppressed by the Input Filter	0	50	ns

2. Guaranteed by design, not production tested.
3. A fast-mode $\mathrm{I}^{2} \mathrm{C}$-bus device can be used in a standard-mode $\mathrm{I}^{2} \mathrm{C}$-bus system, but the requirement t SU;DAT $\geq \pm 250$ ns must be met. This is automatically the case if the device does not stretch the LOW period of the I2C_SCL signal. If such a device does stretch the LOW period
 standard-mode $I^{2} \mathrm{C}$ bus specification) before the $\mathrm{I}^{2} \mathrm{C}$ _SCL line is released.

Figure 3. Definition of Timing for Full-Speed Mode Devices on the $\mathbf{I}^{2} \mathrm{C}$ Bus

Table 7. CAPACITANCE
($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}$ (Typ.) $=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, and T_{A} (Typ.) $=25^{\circ} \mathrm{C}$)

Symbol	Parameter	Condition		Power	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			Unit	
				Min.	Typ.	Max.			
Con_usb/Audio	On Capacitance (6) (Common Port)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV} \text { DC } \\ & \text { bias } \end{aligned}$			$\mathrm{VCC}=3.3 \mathrm{~V}$		9		pF
CofF_ USB/Audio	Off Capacitance ${ }^{(6)}$ (Common Port)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \text { PK-PK, } 100 \mathrm{mV} \text { DC } \\ & \text { bias } \end{aligned}$				7.5		pF	
CofF_USB	Off Capacitance (Non-Common Ports) ${ }^{(6)}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \\ & \text { bias } \end{aligned}$				3		pF	
Con_SENSE_SW	On Capacitance (Common Ports) ${ }^{(6)}$	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\mathrm{PK}}, 100 \mathrm{mV}$ DC bias				55		pF	
CofF_SENSE_SW	Off Capacitance (Common Ports) ${ }^{(6)}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\text {-PK }}, 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias } \end{aligned}$				88		pF	
Con_MIC_SW	On Capacitance (Common Ports) ${ }^{(6)}$	$\mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK} \text { PK, } 100 \mathrm{mV}$ DC bias				170		pF	
CofF_MIC_SW	$\begin{aligned} & \text { Off Capacitance - } \\ & \text { (Common Ports) }^{(6)} \end{aligned}$	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV}_{\text {PK-PK }}, 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias } \end{aligned}$				10		pF	
CON_AGND_SW	On Capacitance (6) (Common Port)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\text {P-PK }}, 100 \mathrm{mV} \\ & \text { DC bias } \end{aligned}$				125		pF	
CON_SBUx_H_SW	On Capacitance (6) (Common Port)	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz}, 100 \mathrm{mV} \mathrm{PK}_{\mathrm{PK}}, 100 \mathrm{mV} \\ & \text { DC bias } \end{aligned}$				160		pF	
$\mathrm{C}_{\text {CNTRL }}$	Control Input Pin Capacitance ${ }^{(6)}$	$\begin{aligned} & \hline \mathrm{f}=1 \mathrm{MHz}, \\ & 100 \mathrm{mV} \text { PP, } 100 \mathrm{mV} \\ & \mathrm{DC} \text { bias } \end{aligned}$	ENN			3		pF	

Table 8. REGISTER MAPS

ADDR	Register Name	Type	Reset Value	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
OOH	Device ID	R	0x09	0	0	0	0	1	0	0	1
01H	OVP Interrupt Mask	R/W	0x00	Reserved	Mask OVP interrupt	Mask OVP /DP_R	Mask OVP /DN_L	Mask OVP /SBU1	Mask OVP /SBU2	Mask OVP /GSBU1	Mask OVP /GSBU2
02H	OVP interrupt flag	R/C	0x00	Res		DP_R	DN_L	SBU1	SBU2	GSBU	GSBU2
03H	OVP status	R	0×00	Res		$\begin{aligned} & \text { OVP/ } \\ & \text { DP_R } \end{aligned}$	$\begin{aligned} & \text { OVP/ } \\ & \text { DN_L } \end{aligned}$	$\begin{aligned} & \text { OVP/SB } \\ & \text { U1 } \end{aligned}$	$\begin{gathered} \text { OVP/SB } \\ \text { U2 } \end{gathered}$	OVP/ GSBU1	OVP/ GSBU2
04H	Switch settings Enable	R/W	0×98	Device control	SBU1_H to $\mathrm{SBU} \bar{x}$	$\begin{aligned} & \text { SBU2 H } \\ & \text { to SBÜx } \end{aligned}$	DN_L to DN or L	$\begin{aligned} & \mathrm{DP} _\mathrm{R} \text { to } \\ & \mathrm{DP} \text { or } \mathrm{R} \end{aligned}$	Sense to GSBUx	MIC to SBUx	Audio Ground to SBUx
05H	Switch select	R/W	0x18	Reserved	$\begin{aligned} & \text { SBU1_H } \\ & \text { to SBÜx } \end{aligned}$	$\begin{aligned} & \text { SBU2 H } \\ & \text { to SBUX } \end{aligned}$	DN L to DN or L	DP_R to DP or R	Sense to GSBUx	MIC to SBUx	Audio Ground to SBUx
06H	Switch Status0	R	0x00	Res		Sense S	Status	DP_R	Status	DN_L S	Status
07H	Switch Status 1	R	0x00	Res			2 Switch S			1 Switch S	
08H	Audio Switch Left Channel turn on Control	R/W	0x01	Audio switch left channel slow control [7:0]							
09H	Audio Switch Right Channel turn on Control	R/W	0×01	Audio switch right channel slow control [7:0]							
OAH	MIC switch turn on control	R/W	0×01	MIC switch right channel slow control [7:0]							
OBH	Sense switch turn on control	R/W	0×01	Sense switch right channel slow control [7:0]							
OCH	Audio Ground Switch turn on Control	R/W	0×01	Audio ground switch right channel slow control [7:0]							

FSA4480

Table 8. REGISTER MAPS

ADDR	Register Name	Type	Reset Value	BIT7	BIT6	BIT5	BIT4	BIT3	BIT2	BIT1	BITO
ODH	Timing Delay between R switch enable and L switch enable	R/W	0x00	Timing Delay between R switch enable and L switch enable control [7:0]							
OEH	Timing Delay between MIC switch enable and L switch enable	R/W	0×00	Timing Delay between MIC switch enable and L switch enable control [7:0]							
OFH	Timing Delay between Sense switch enable and L switch enable	R/W	0×00	Timing Delay between Sense switch enable and L switch enable control [7:0]							
10H	Timing Delay between Audio ground switch enable and L switch enable	R/W	0x00	Timing Delay between Audio ground switch enable and L switch enable control [7:0]							
11H	Audio accessory status	R	0×02	Reserved						CC_IN	DET
12 H	Function enable	R/W	0x08	Reserved	DET I/O Control	RES detection range setting	GIPO control	$\begin{gathered} \text { SLOW } \\ \text { TURN-O } \\ N \\ \text { CONTR } \\ \text { OLL } \end{gathered}$	MIC auto control	RES detection : auto clear	Audio jack detection : auto clear
13H	RES detection pin setting	R/W	0×00	Reserved					Detection pin select [2:0]		
14H	RES detection value	R	0xFF	R detection value [7:0]							
15H	RES detection interrupt threshold	R/W	0x16	R detection Interrupt resistance threshold [7:0]							
16H	RES detection interval	R/W	0X00	Reserved						Detection interval [1:0]	
17H	Audio jack Status	RO	0x01	Reserved				4pole,SB U2 MIC	4pole,SB U1 MIC	3 3pole	No audio
18H	Detection interrupt	R/C	0×00	Reserved					Audio detection done	RES detection occurred	RES detection done
19H	Detection interrupt Mask	R/W	0x00	Reserved					Audio detection done mask	RES detection occurred mask	RES detection done mask
1AH	Audio detection RGE1	RO	0xFF	audio detection value REG1 [7:0]							
1BH	Audio detection RGE2	RO	0xFF	audio detection value REG2 [7:0]							
1 CH	MIC Threshold DATAO	R/W	0x20	MIC Threshold value DATA0 [7:0]							
1DH	MIC Threshold DATA1	R/W	0xFF	MIC Threshold value DATA1 [7:0]							
1EH	I2C Reset	W/C	0x00	Reserved							I2C reset
1FH	Current Source Setting	R/W	0x07	Reserved				Current Source setting [3:0]			

Table 9. $\mathrm{I}^{2} \mathrm{C}$ SLAVE ADDRESS

ADDR	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ADDR $=\mathrm{L}$	1	0	0	0	0	1	0	R/W
ADDR $=\mathrm{H}$	1	0	0	0	0	1	1	R/W

DEVICE ID
Address: 00h
Reset Value: 8'b 0000_1001
Type: Read

Bits	Name	Size	Description
$7: 6$	Vendor ID	2	Vendor ID
$5: 3$	Version ID	3	Device Version ID
$2: 0$	Revision ID	3	Revision History ID

OVP INTERRUPT MASK

Address: 01h
Reset Value: 8'b 0000_0000
Type: Read/Write

Bits	Name	Size	Description
7	Reserved	1	Do Not Use
6	OVP Interrupt mask control	1	OVP Interrupt function Enable/Disable $0:$ Controlled by [5:0] bit 1: Mask all connector side pins OVP interrupt
5	DP_R OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
4	DN_L OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
3	SBU1 OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
2	SBU2 OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
1	GSBU1 OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt
0	GSBU2 OVP Interrupt mask control	1	0: Do not mask OVP interrupt 1: Mask OVP interrupt

OVP INTERRUPT FLAG

Address: 02h
Reset Value: 8'b 0000_0000
Type: Read Clear

Bits	Name	Size	Description
$[7: 6]$	Reserved	2	Do Not Use
5	DP_R OVP	1	O: OVP event has not occurred $1:$ OVP event has occurred
4	DN_L OVP	1	0: OVP event has not occurred $1:$ OVP event has occurred
3	SBU1 OVP	1	0: OVP event has not occurred $1:$ OVP event has occurred
2	SBU2 OVP	1	0: OVP event has not occurred $1:$ OVP event has occurred
1	GSBU1 OVP	1	0: OVP event has not occurred $1:$ OVP event has occurred
0	GSBU2 OVP	1	0: OVP event has not occurred $1:$ OVP event has occurred

OVP STATUS

Address: 03h
Reset Value: 8'b 0000_0000
Type: Read

Bits	Name	Size	Description
$[7: 6]$	Reserved	2	Do Not Use
5	OVP on DP_R PIN	1	O: OVP event has not occurred 1: OVP event has occurred
4	OVP on DN_L PIN	1	0: OVP event has not occurred $1:$ OVP event has occurred
3	OVP on SBU1 PIN	1	0: OVP event has not occurred $1:$ OVP event has occurred
2	OVP on SBU2 PIN	1	0: OVP event has not occurred $1:$ OVP event has occurred
1	OVP on GSBU1 PIN	1	0: OVP event has not occurred $1:$ OVP event has occurred
0	OVP on GSBU2 PIN	1	0: OVP event has not occurred $1:$ OVP event has occurred

SWITCHING SETTING ENABLE

Address: 04h

Reset Value: 8'b 1001_1000
Type: Read/Write

Bits	Name	Size	Description
7	Device Enable	1	0: Device Disable; L, R pull down by 10 k and other switch nodes will be high-Z for positive input. 1: Device Enable.
6	SBU1_H to SBUx switches	1	0: Switch Disable; SBU1_H will be high-Z for positive input 1: Switch Enable
5	SBU2_H to SBUx switches	1	0: Switch Disable; SBU2_H will be high-Z for positive input 1: Switch Enable
4	DN_L to DN or L switches	1	0: Switch Disable; DN_L,DN will be high-Z for positive input. L pull down by 10 kohm 1: Switch Enable
3	DP_R to DP or R switches	1	0: Switch Disable; DP_R,DP will be high-Z for positive input. R pull down by 10 kohm 1: Switch Enable
2	Sense to GSBUx switches	1	0: Switch Disable; Sense,GSBU1 and GSBU2 will be high-Z for positive input 1: Switch Enable
1	MIC to SBUx switches	1	0: Switch Disable: MIC will be high-Z for positive input. 1: Switch Enable
0	AGND to SBUx switches	1	0: Switch Disable: AGND will be high-Z for positive input. 1: Switch Enable

SWITCH SELECT

Address: 05h
Reset Value: 8'b 0001_1000
Type: Read/Write

Bits	Name	Size	Description
7	Reserved	1	Do Not Use
6	SBU1_H switches	1	0: SBU1_H to SBU1 switch ON 1: SBU1_H to SBU2 switch ON
5	SBU2_H switches	1	0: SBU2_H to SBU2 switch ON 1: SBU2_H to SBU1 switch ON
4	DN_L to DN or L switches	1	0: DN_L to L switch ON 1: DN_L to DN switch ON
3	DP_R to DP or R switches	1	0: DP_R to R switch ON 1: DP_R to DP switch ON
2	Sense to GSBUx switches	1	0: Sense to GSBU1 switch ON 1: Sense to GSBU2 switch ON
1	MIC to SBUx switches	1	0: MIC to SBU2 switch ON 1: MIC to SBU1 switch ON
0	AGND to SBUx switches	1	0: AGND to SBU1 switch ON 1: AGND to SBU2 switch ON

SWITCH STATUSO

Address: 06h
Reset Value: 8'b 0000_0000
Type: Read Only

Bits	Name	Size	Description
$[7: 6]$	Reserved	2	Do not use
$[5: 2]$	Sense Switch Status	2	00: Sense switch is Open/Not Connected 01: Sense connected to GSBU1 10: Sense connected to GSBU2
$[3: 2]$	DP_RSwitch Status	2	00: DP_R Switch Open/Not Connected 01: DP_Rconnected to DP 10: DP_Rconnected to R 11: Not Valid
$[1: 0]$	DN_L switch Status	2	00: DN_L Switch Open/Not Connected 01: DN_L connected to DN 10: DN_L connected to L 11: Not Valid

SWITCH STATUS1

Address: 07h
Reset Value: 8'b 0000_0000
Type: Read Only

Bits	Name	Size	Description
[7:6]	Reserved	2	Do not use
[5:3]	SBU2 Switch Status	3	000: SBU2 switch is Open/Not Connected 001: SBU2 connected to MIC 010: SBU2 connected to AGND 011: SBU2 connected to SBU1_H 100: SBU2 connected to SBU2_H 101: SBU2 connected both SBU1_H and SBU2_H 110...111: Do not use
[2:0]	SBU1 Switch Status	3	000: SBU1 switch is Open/Not Connected 001: SBU1 connected to MIC 010: SBU1 connected to AGND 011: SBU1 connected to SBU1_H 100: SBU1 connected to SBU2_H 101: SBU1 connected both SBU1_H and SBU2_H 110...111: Do not use

AUDIO SWITCH LEFT CHANNEL SLOW TURN-ON

Address: 08h
Reset Value: 8'b 0000_0001
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Switch turn on rising time setting	8	$11111111: 25600 \mu \mathrm{~S}$
			\ldots
			$00000001: 200 \mu \mathrm{~S}$
			$00000000: 100 \mu \mathrm{~S}$

AUDIO SWITCH RIGHT CHANNEL SLOW TURN-ON

Address: 09h
Reset Value: 8'b 0000_0001
Type: Read/Write

Bits	Name	Size	Description
$[7: 0]$	Switch turn on rising time setting	8	$11111111: 25600 \mu \mathrm{~S}$
			\ldots
			$00000001: 200 \mu \mathrm{~S}$
			$00000000: 100 \mu \mathrm{~S}$

MIC SWITCH SLOW TURN-ON

Address: OAh
Reset Value: 8'b 0000_0001
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Switch turn on rising time setting	8	$11111111: 25700 \mu \mathrm{~S}$
			\ldots
			$00000010: 350 \mu \mathrm{~S}$
			$00000001: 250 \mu \mathrm{~S}$
			$00000000:$ Not Valid

SENSE SWITCH SLOW TURN-ON

Address: OBh
Reset Value: 8'b 0000_0001
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Switch turn on rising time setting	8	$11111111: 25600 \mu \mathrm{~S}$
			\ldots
			$00000001: 200 \mu \mathrm{~S}$
			$00000000: 100 \mu \mathrm{~S}$

AUDIO GROUND SWITCH SLOW TURN-ON

Address: 0Ch
Reset Value: 8'b 0000_0001
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Switch turn on rising time setting	8	$11111111: 179000 \mu \mathrm{~S}$
			\ldots
			$00000001: 1400 \mu \mathrm{~S}$
			$00000000: 700 \mu \mathrm{~S}$

TIMING DELAY BETWEEN R SWITCH ENABLE AND L SWITCH ENABLE

Address: ODh
Reset Value: 8'b 0000_0000
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Delay timing setting	8	$11111111: 25500 \mu \mathrm{~S}$
			$11111110: 25400 \mu \mathrm{~S}$
			\ldots
			$00000001: 100 \mu \mathrm{~S}$
			$00000000: 0 \mu \mathrm{~S}$

TIMING DELAY BETWEEN MIC SWITCH ENABLE AND L SWITCH ENABLE
Address: 0Eh
Reset Value: 8'b 0000_0000
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Delay timing setting	8	$11111111: 25500 \mu \mathrm{~S}$
			$11111110: 25400 \mu \mathrm{~S}$
			\cdots
			$00000001: 100 \mu \mathrm{~S}$
			$00000000: 0 \mu \mathrm{~S}$

TIMING DELAY BETWEEN SENSE SWITCH ENABLE AND L SWITCH ENABLE
Address: OFh
Reset Value: 8'b 0000_0000
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Delay timing setting	8	$11111111: 25500 \mu \mathrm{~S}$
			$11111110: 25400 \mu \mathrm{~S}$
			\ldots
			$00000001: 100 \mu \mathrm{~S}$
			$00000000: 0 \mu \mathrm{~S}$

TIMING DELAY BETWEEN AUDIO GROUND SWITCH ENABLE AND L SWITCH ENABLE
Address: 10h
Reset Value: 8'b 0000_0000
Type: Read/Write

Bits	Name	Size	
$[7: 0]$	Delay timing setting	8	$11111111: 25500 \mu \mathrm{~S}$
			$11111110: 25400 \mu \mathrm{~S}$
			\ldots
			$00000001: 100 \mu \mathrm{~S}$
			$00000000: 0 \mu \mathrm{~S}$

AUDIO ACCESSORY STATUS

Address: 11h
Reset Value: 8'b 0000_0010
Type: Read

Bits	Name	Size	Description
$[7: 2]$	Reserved	6	Do not use
1	CC_IN	1	$0:$ CC_IN $<1.2 \mathrm{~V}$ $1:$ CC_IN $>1.5 \mathrm{~V}$
0	DET	1	0: DET output is low $1:$ DET is output is high

FUNCTION ENABLE

Address: 12h
Reset Value: 8'b 0000_1000
Type: Read/Write

Bits	Name	Size	Description
7	Reserved	1	Do not use
6	DET I/O Control	1	1: DET pin is in Open/Drain Configuration 0: DET pin is in Push/Pull Configuration
5	RES detection range setting	1	$1: 10 \mathrm{k}$ to 2560 k $0: 1 \mathrm{k}$ to 256 k
4	GPIO control enable	1	1: enable 0: disable
3	Slow turn on control enable	1	1: enable 0: disable
2	MIC auto break out control enable	1	1: enable 0: disable
1	RES detection enable	1	1: enable; will be changed to '0' after low resistance detection 0: disable
0	Audio jack detection and configuration enable	1	1: enable; will be changed to '0' after audio jack detection and configuration $0:$ disable

When GPIO control mode (manual switch control) is enable. 'Switch control' register is changed to read only. It will reflect switch status. $\mathrm{I}^{2} \mathrm{C}$ slave address is

RES DETECTION PIN SETTING

Address: 13h
Reset Value: 8'b 0000_0000
Type: Read

Bits	Name	Size	Description
[7:3]	Reserved	5	Do not use
[2:0]	Pin selection	3	$\begin{aligned} & \hline \text { 000: CC_IN } \\ & \text { 001: DP/R } \\ & \text { 010: DN_L } \\ & \text { 011: SBU1 } \\ & \text { 100: SBU2 } \\ & \text { 101: Do not use } \\ & \ldots \\ & \text { 111: Do not use } \end{aligned}$

If RES detection pin is enable before setting PIN selection it will always do the CC_IN first. Recommend user to select the pin first before setting the RES detection pin enable.

RES VALUE

Address: 14h
Reset Value: 8'b 1111_1111
Type: Read

Bits	Name	Size	Description
$[7: 0]$	Detected resistance value	8	$0000 _0000: \mathrm{R}<1 \mathrm{k}$
			\ldots
		$1111 _1111: \mathrm{R}>300 \mathrm{~K}$	

RES DETECTION THRESHOLD

Address: 15h
Reset Value: 8'b 0001_0110
Type: Read

Bits	Name	Size	Description
[7:0]	RES detection threshold	8	```Selection by \(1 \mathrm{~K} \Omega\) per step if Reg \(12 \mathrm{~h}[5]=0\) Selection by \(10 \mathrm{~K} \Omega\) per step if Reg 12h [5] = 0 Default Value \(=22 \mathrm{~K} \Omega\) 0000_0000: \(1 \mathrm{~K} \Omega / 10 \mathrm{~K} \Omega\) 1111_1111: \(256 \mathrm{~K} \Omega / 2560 \mathrm{~K} \Omega\)```

RES DETECTION INTERVAL

Address: 16h
Reset Value: 8'b 0000_0000
Type: Read

Bits	Name	Size	
$[7: 2]$	Reserved	6	Do not use
$[1: 0]$	RES detection interval	2	$00:$ Single
			$01: 100 \mathrm{mS}$
			$10: 1 \mathrm{~S}$

AUDIO JACK STATUS

Address: 17h
Reset Value: 8'b 0000_0001
Type: Read

Bits	Name	Size	Description
$[7: 3]$	Reserved	4	Do not use
3	4 pole	1	$1: 4$ Pole SBU2 to MIC, SBU1 to audio ground $0:$ others
2	4 pole	1	$1: 4$ Pole SBU1 to MIC, SBU2 to audio ground $0:$ others
1	3 pole	1	$1: 3$ pole 0: others
0	No audio accessory	1	1: No audio accessory $0:$ Audio accessory attached

RES DETECTION /AUDIO JACK DETECTION INTERRUPT FLAG

Address: 18h
Reset Value: 8'b 0000_0000
Type: Read Clear

Bits	Name	Size	Description
$[7: 3]$	Reserved	5	Do Not Use
2	Audio jack detection and configuration	1	0: Audio jack detection and configuration has not occurred 1: Audio jack detection and configuration has occurred
1	Low resistance occurred	1	0: Low resistance has not occurred 1: Low resistance has occurred
0	Low resistance detection	1	0: Low resistance has not occurred 1: Low resistance has occurred

RES /AUDIO JACK DETECTION INTERRUPT MASK

Address: 19h
Reset Value: 8'b 0000_0000
Type: Read Clear

Bits	Name	Size	Description
$[7: 3]$	Reserved	5	Do Not Use
2	Audio jack detection and configuration	1	1: Mask Audio jack detection and configuration has occurred interrupt
1	Low resistance occurred	1	1: Low resistance has occurred interrupt
0	Low resistance detection	1	1: Low resistance detection has occurred interrupt

AUDIO JACK DETECTION REG1 VALUE

Address: 1Ah
Reset Value: 8'b 1111_1111
Type: Read

Bits	Name	Size	Description
$[7: 0]$	Audio jack detection value	8	Resistance between SBU1 to SBU2

AUDIO JACK DETECTION REG2 VALUE

Address: 1Bh
Reset Value: 8'b 1111_1111
Type: Read

Bits	Name	Size	Description
$[7: 0]$	Audio jack detection value	8	Resistance between SBU2 to SBU1

MIC DETECTION THRESHOLD DATAO

Address: 1Ch
Reset Value: 8'b 0010_0000
Type: Read/Write

Bits	Name	Size	Description
$[7: 0]$	MIC detection threshold DATA0	8	MIC detection threshold DATA0 $0010 _0000: 300 \mathrm{mV}$

MIC DETECTION THRESHOLD DATA1
Address: 1Dh
Reset Value: 8'b 1111_1111
Type: Read/Write

Bits	Name	Size	Description
$[7: 0]$	MIC detection threshold DATA1	8	MIC detection threshold DATA1 $1111 _1111: 2.4 \mathrm{~V}$

I2C RESET

Address: 1Eh
Reset Value: 8'b 0000_0000
Type: W/C

Bits	Name	Size	
$[7: 1]$	Reserved	7	Reserved
0	I2C reset	1	0: default $1: 1^{2} \mathrm{C}$ reset

CURRENT SOURCE SETTING

Address: 1Fh
Reset Value: 8'b 0000_0111
Type: Write

Bits	Name	Size	
$[7: 4]$	Reserved	4	Reserved
$[3: 0]$	Current Source Setting	4	$1111: 1500 \mu \mathrm{~A}$
			$0111: 700 \mu \mathrm{~A}$
			$0001: 100 \mu \mathrm{~A}$
		$0000:$ invalid	

APPLICATION INFORMATION

Over-Voltage Protection

FSA4480 features over-voltage protection (OVP) on receptacle side pins that switches off the internal signal routing path if the input voltage exceeds the OVP threshold.

If OVP is occurred, interrupt signal can be send by INT signal and FLAG data will provide information that which pin had OVP event.

Headset Detection

FSA4480 integrates headset unplug detection function by detecting the CC_IN voltage. The function is always active when device is enabling. DET will be high when CC_IN is low (CC_IN < 1.2 V). When CC_IN = High (CC_IN > 1.5 V), DET will be released to low.

	Device Disable	Device Enable
CC_IN $<\mathrm{V}_{\text {TH_L }}=1.2 \mathrm{~V}$	$\mathrm{DET}=0$	DET $=1$
CC_IN $>\mathrm{V}_{\text {TH_H }}=1.5 \mathrm{~V}$	$\mathrm{DET}=0$	$\mathrm{DET}=0$

MIC Switch Auto-off Function

The function is active during control bit $0 x 12 \mathrm{~h}$ bit[2] $=1$. When CC_IN is high (CC_IN > 1.5 V) and L,R, Audio ground switches are under on status, MIC switch will be off and receptacle side pin will be connected to ground for $50 \mu \mathrm{~S}$ first. Then it shows high-Z status under MIC switch is set on status.

Audio Ground Detection and Configuration

The function is active when control bit $0 \times 12 \mathrm{~h}$ bit[0$]=1$ and R, L AGND switches are set to be on status. For type-C interface analog headset, the audio ground could be SBU1 pin or SBU2 pin. The function will provide autonomous detection and configuration to route MIC and audio ground signal accordingly.

Figure 4.

During detection and configuration, the R, L, Sense, MIC and Audio ground switch will be off. After detection and configuration, R and L switches will turn on according to
switch configuration and timing setting. MIC, Sense and Audio ground will turn on according to detection results and timing control setting.

Resistance Detection

The function is active during control bit $0 x 12 \mathrm{~h}$ bit[1] $=1$. It will monitor the resistance between receptacle side pins and ground. During resistance detection, the switch which is monitored will be off. The detection result will be saved
in the resistance flag register. The measurement could be from $1 \mathrm{k} \Omega$ to $2.56 \mathrm{M} \Omega$ which is controlled by internal register. The detection interval can be set at $100 \mathrm{~ms}, 1 \mathrm{~s}$ or 10 s by register $0 \times 16 \mathrm{~h}$.

Figure 5.

Manual Switch Control

The function is active during control bit 0 x 12 h bit[4] = 1 and $0 x 04 \mathrm{~h}=\mathrm{FF}$. It will provide manual control for device.

During this configuration, ADDR and INT pins will be set as logic control input.

MANUAL SWITCH CONTROL

(The function is active during control bit $0 \times 12 \mathrm{~h}$ bit[4] = 1 and $0 \times 04 \mathrm{~h}=\mathrm{FF}$. It will provide manual control for device. During this configuration, ADDR and INT pins will be set as logic control input.)

Power	ENN	ADDR	INT	SENSE Switch	Headset Detection	USB Switch	Audio Switch	MIC/ Audio GND Switch	SBU by Pass Switch
OFF	X	X	X	OFF	OFF	OFF	OFF	OFF	OFF
ON	H	X	X	OFF	OFF	OFF	OFF	OFF	
ON	L	0	0	OFF	OFF	ON: DP_R to DP DN_L to DN	OFF	OFF	

$I^{2} \mathrm{C}$ INTERFACE

The FSA4480 includes a full $\mathrm{I}^{2} \mathrm{C}$ slave controller. The $\mathrm{I}^{2} \mathrm{C}$ slave fully complies with the $\mathrm{I}^{2} \mathrm{C}$ specification version 2.1 requirements. This block is designed for fast mode, 400 kHz , signals.

Examples of an $\mathrm{I}^{2} \mathrm{C}$ write and read sequence are shown in below figures respectively.

NOTE: \quad Single Byte read is initiated by Master with P immediately following first data byte.
Figure 6. $\mathrm{I}^{2} \mathrm{C}$ Write Example

Figure 7. $I^{2} \mathrm{C}$ Read Example

TEST DIAGRAMS

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{ON}} / \mathrm{I}_{\mathrm{SW}}$

Figure 8. On Resistance

Figure 10. On Leakage

NOTE: Each switch port is tested separately.
Figure 9. Off Leakage (loz)

NOTE: Each switch port is tested separately.

Figure 11. Power Off Leakage (loff)

Figure 12. Test Circuit Load

Figure 13. Turn On/Off Waveforms under Manual Mode

C_{L} includes test fixture and stray capacitance

Figure 14. Bandwidth

Figure 16. Adjacent Channel Crosstalk

Figure 18. Channel On Capacitance

OFF - Isolation $=20 \log \left(\mathrm{~V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}\right)$

Figure 15. Channel Off Isolation

Figure 17. Channel Off Capacitance

C_{L} includes test fixture and stray capacitance

Figure 19. Total Harmonic Distortion (THD + N)

ORDERING INFORMATION

Part Number	Top Mark	Package	\mathbf{D}	\mathbf{E}	\mathbf{X}	\mathbf{Y}
FSA4480UCX	$6 D$	$25-$ Ball WLCSP	2.24 mm	2.28 mm	0.32 mm	0.34 mm

WLCSP25 2.24x2.28x0.586

CASE 567UZ
ISSUE B
DATE 03 JAN 2018

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DATUM C APPLIES TO THE SPHERICAL CROWN OF THE SOLDER BALLS

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	0.547	0.586	0.625
A1	0.178	0.208	0.238
A2	0.360	0.378	0.396
b	0.24	0.26	0.28
D	2.250	2.280	2.310
E	2.210	2.240	2.270
e	0.40 BSC		
x	0.305	0.320	0.335
y	0.325	0.340	0.355

$\frac{\mathrm{e}}{\mathrm{~A} 1}-1$	$-\vdash \quad \begin{gathered} (\varnothing 0.215) \text { Bottom } \\ \text { of Cu Pad } \end{gathered}$
(e) $\oplus \oplus \bigcirc \bigcirc \bigcirc{ }^{-} \oplus^{-}$	
e $\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$	
$1 \oplus \bigcirc \bigcirc \bigcirc \bigcirc$	
$\longleftarrow \oplus \bigcirc \bigcirc \bigcirc \bigcirc$	
	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$
	RECOMMENDED MOUNTING FOOTPRINT NSMD PAD TYPE)

DOCUMENT NUMBER:	98AON73488G	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontroled except when stamped "CONTROLLED COPY' in red.	
DESCRIPTION:	WLCSP25 2.24×2.28×0.586	PAGE 1 OF 1	

ON Semiconductor and (iN) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and ON are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. Typical parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Email Requests to: orderlit@onsemi.com
ON Semiconductor Website: www.onsemi.com

Europe, Middle East and Africa Technical Support:
Phone: 00421337902910
For additional information, please contact your local Sales Representative

