

APTF1616LSEEZGKQBKC

1.6 x 1.6 mm Full-Color Surface Mount LED

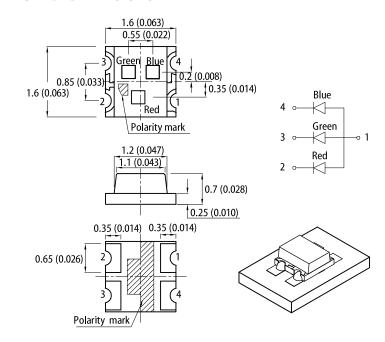
DESCRIPTIONS

- The Hyper Red source color devices are made with AlGaInP on GaAs substrate Light Emitting Diode
- The Green source color devices are made with InGaN on Sapphire Light Emitting Diode
- The Blue source color devices are made with InGaN Light Emitting Diode
- · Electrostatic discharge and power surge could damage the LEDs
- . It is recommended to use a wrist band or anti-electrostatic glove when handling the LEDs
- · All devices, equipments and machineries must be electrically grounded

FEATURES

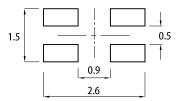
- 1.6 mm x 1.6 mm SMD LED, 0.7 mm thickness
- · Low power consumption
- · Can produce any color in visible spectrum, including white light
- Package: 2000 pcs / reel • Moisture sensitivity level: 3
- Halogen-free
- · RoHS compliant

APPLICATIONS


- Backlight
- · Status indicator
- Home and smart appliances
- · Wearable and portable devices
- · Healthcare applications

ATTENTION

Observe precautions for handling electrostatic discharge sensitive devices



PACKAGE DIMENSIONS

RECOMMENDED SOLDERING PATTERN

(units: mm; tolerance: \pm 0.1)

- Notes.

 1. All dimensions are in millimeters (inches).

 2. Tolerance is ±0.2(0.008") unless otherwise noted.

 3. The specifications, characteristics and technical data described in the datasheet are subject to The device has a single mounting surface. The device must be mounted according to the specifications.

SELECTION GUIDE

Part Number	Emitting Color (Material)	Lens Type	Iv (mcd) @ 2mA [2]		Viewing Angle [1]
			Min.	Тур.	201/2
APTF1616LSEEZGKQBKC	Hyper Red (AlGaInP)	Water Clear	6	15	
	Green (InGaN)		30	80	130°
	■ Blue (InGaN)		6	14	

Notes.

1. 61/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.

2. Luminous intensity / luminous flux: +/-15%.

3. Luminous intensity value is traceable to CIE127-2007 standards.

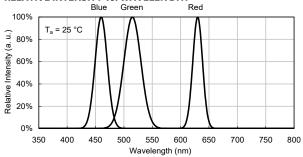
ELECTRICAL / OPTICAL CHARACTERISTICS at T_A=25°C

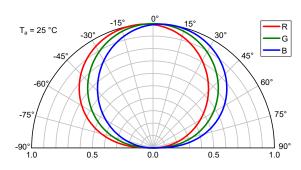
Parameter	Symbol	Emitting Color	Value		Unit	
Farameter	Symbol	Emitting Color	Тур.	Max.		
Wavelength at Peak Emission I _F = 2mA	λ_{peak}	Hyper Red Green Blue	630 515 460	-	nm	
Dominant Wavelength I _F = 2mA	avelength $I_F = 2mA$ λ_{dom} [1]		621 525 465	-	nm	
Spectral Bandwidth at 50% Φ REL MAX I _F = 2mA	% Φ REL MAX Δλ Hyper Red Green Blue		20 35 25	-	nm	
Capacitance	С	Hyper Red Green Blue	25 45 100	-	pF	
Forward Voltage I _F = 2mA	$V_{F}^{[2]} \hspace{1cm} \begin{array}{c} \hspace{1cm} \hspace{1cm}\hspace{1cm} \hspace{1cm} 1c$		1.8 2.65 2.65	2.1 3.1 3.1	V	
Reverse Current (V _R = 5V)	Hyper Red I _R Green Blue		-	10 50 50	μА	
Temperature Coefficient of λ_{peak} $I_F=2mA,$ -10°C $\leq T \leq 85^{\circ}C$	TC_{\lambdapeak}	Hyper Red Green Blue	0.13 0.05 0.04	-	nm/°C	
Temperature Coefficient of λ_{dom} I _F = 2mA, -10°C \leq T \leq 85°C	Hyper Red ΤC _{λdom} Green Blue		0.06 0.03 0.03	-	nm/°C	
Temperature Coefficient of V_F I_F = 2mA, -10°C \leq T \leq 85°C	TC _V	Hyper Red Green Blue	-2.0 -3.0 -3.0	-	mV/°C	

The dominant wavelength (λd) above is the setup value of the sorting machine. (Tolerance λd: ±1nm.)
 Forward voltage: ±0.1V.
 Wavelength value is traceable to CIE127-2007 standards.
 Excess driving current and / or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

ABSOLUTE MAXIMUM RATINGS at T_A =25°C

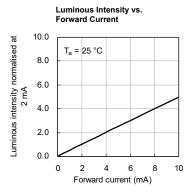
Parameter	Sumah al	Value			l lmi4
raidilletei	Symbol	Hyper Red	Green	Blue	Unit
Power Dissipation	P_D	75	102.5	120	mW
Reverse Voltage	V_R	5	5	5	V
Junction Temperature	T _j	115	115	115	°C
Operating Temperature T _{op} -40 to +85				°C	
Storage Temperature	T _{stg} -40 to +85			°C	
DC Forward Current	I _F	30	25	30	mA
Peak Forward Current	I _{FM} ^[1]	195	150	150	mA
Electrostatic Discharge Threshold (HBM)	-	3000	450	250	V
Thermal Resistance (Junction / Ambient)	R _{th JA} ^[2]	780	790	790	°C/W
Thermal Resistance (Junction / Solder point)	R _{th JS} ^[2]	640	650	650	°C/W

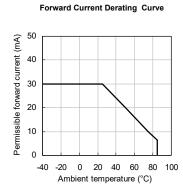

Notes:
1. 1/10 Duty Cycle, 0.1ms Pulse Width.
2. $R_{th \ JS}$ Results from mounting on PC board FR4 (pad size \geq 16 mm² per pad).
3. Relative humidity levels maintained between 40% and 60% in production area are recommended to avoid the build-up of static electricity – Ref JEDEC/JESD625-A and JEDEC/J-STD-033.

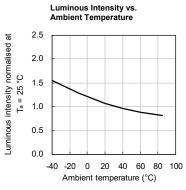


TECHNICAL DATA

RELATIVE INTENSITY vs. WAVELENGTH

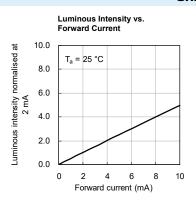


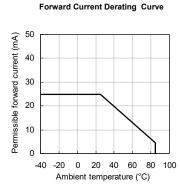

SPATIAL DISTRIBUTION

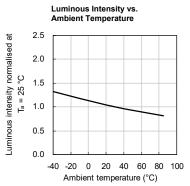


HYPER RED

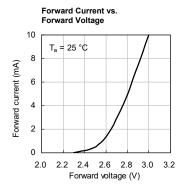
Forward Current vs. Forward Voltage 10 T_a = 25 °C 8 Forward current (mA) 2 1.6 1.7 1.8 1.9 2.0 Forward voltage (V)

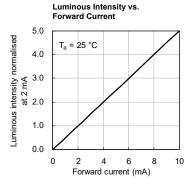


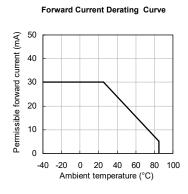


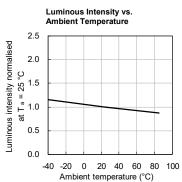


GREEN

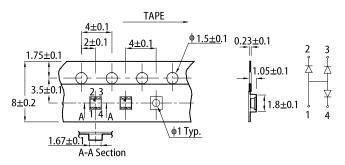

Forward Current vs. Forward Voltage 10 T_a = 25 °C 8 Forward current (mA) 6 0 2.5 2.7 2.9 3.1 3.3 2.3 Forward voltage (V)



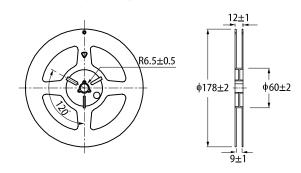




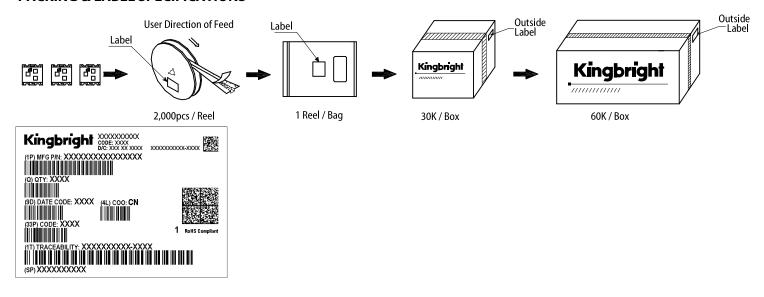
BLUE



REFLOW SOLDERING PROFILE for LEAD-FREE SMD PROCESS


300 above 255°C (°C) 260°C max. 30s max. 10s max. 250 3°C/s max. 6°C/s max. 200 150 Temperature pre-heating 100 150~200°C above 217°C 60~150s 60~120s 50 25°C 0 0 50 100 150 200 250 Time

- 1. Don't cause stress to the LEDs while it is exposed to high temperature.
 2. The maximum number of reflow soldering passes is 2 times.
 3. Reflow soldering is recommended. Other soldering methods are not recommended as they might cause damage to the product.


TAPE SPECIFICATIONS (units:mm)

REEL DIMENSION (units: mm)

PACKING & LABEL SPECIFICATIONS

PRECAUTIONARY NOTES

- The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.

 The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening
- liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.

 The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.
- All design applications should refer to Kingbright application notes available at https://www.Kingbright

