PRODUCT/PROCESS CHANGE NOTIFICATION PCN AMS-AAS/14/8379 Dated 11 Mar 2014 New material set in Shenzhen plant for Power switch products in SO8 package #### **Table 1. Change Implementation Schedule** | Forecasted implementation date for change | 04-Mar-2014 | | |--|-------------|--| | Forecasted availability date of samples for customer | 04-Mar-2014 | | | Forecasted date for STMicroelectronics change Qualification Plan results availability | 04-Mar-2014 | | | Estimated date of changed product first shipment | 10-Jun-2014 | | #### **Table 2. Change Identification** | Product Identification
(Product Family/Commercial Product) | Power switch products | |---|---| | Type of change | Package assembly material change | | Reason for change | To be more consistent with current assembly fabrication practices | | Description of the change | Progressing on the activities related to SO8 package in ST Shenzhen, ST is glad to announce a new material set for Power switch products. The molding compound, the die attach glue and the leadframe material will be changed to be more consistent with the current assembly practices. | | Change Product Identification | "G" letter in traceability code on the package | | Manufacturing Location(s) | | | | Tab | le 3. | List | of | Attac | hments | |--|-----|-------|------|----|-------|--------| |--|-----|-------|------|----|-------|--------| | Customer Part numbers list | | |----------------------------|--| | Qualification Plan results | | | Customer Acknowledgement of Receipt | PCN AMS-AAS/14/8379 | |---|---------------------| | Please sign and return to STMicroelectronics Sales Office | Dated 11 Mar 2014 | | □ Qualification Plan Denied | Name: | | □ Qualification Plan Approved | Title: | | | Company: | | □ Change Denied | Date: | | □ Change Approved | Signature: | | Remark | **47/**. ## **DOCUMENT APPROVAL** | Name | Function | |----------------------|-------------------| | Grillo, Lionel | Marketing Manager | | Onetti, Andrea Mario | Product Manager | | Bugnard, Jean-Marc | Q.A. Manager | **A7**/. # Analog, MEMS and Sensors Group - AMS Analog and Audio Systems Division (AAS) New material set in Shenzhen plant for Power switch products in SO8 package #### WHAT: Progressing on the activities related to SO8 package in ST Shenzhen, ST is glad to announce a new material set for Power switch products. Please find more information in the table here below. | Metavial | Current process | Modified process | Comment | |--------------------|---------------------------|---------------------------|---| | Material | | | | | Diffusion location | ST Ang Mo Kio (Singapore) | ST Ang Mo Kio (Singapore) | No change | | Assembly location | ST Shenzhen | ST Shenzhen | No change | | Molding compound | Nitto MP8000 | Sumitomo G700K | Lower stress molding compound bringing major improvement for package robustness versus customer soldering stress. Less delamination risk. | | Die attach | Hitachi 4900ST10 | Ablestick 8601-S25 | New glue will solve sporadic glue homogeneity issue we could encounter in past years. | | Leadframe | Copper preplated NiPdAu | Copper preplated NiPdAgAu | Ag layer bring higher roughness which allow better adhesion on frame and better solderability of the wire. | | Wire | Gold 1.3mils | Gold 1.3mils | No change | For the complete list of affected part numbers, please refer to the attached Product list. Samples of vehicle test are available now and other samples will be launched upon customer's request. Please submit requests for samples within 30 days of this notification. #### WHY: This change will ensure a higher quality level for Power switch products processed in BCD6S process. Please note that this PCN is replacing the PCN APM/11/6872 sent in 2011 and announcing the introduction of copper wire. The PCN APM/11/6872 has been cancelled due to production constraints. #### HOW: The qualification program consists mainly of comparative electrical characterization and reliability tests. You will find here after the qualification test plan which summarizes the various test methods and conditions that ST uses for this qualification program. #### WHEN: The new material set production in ST Shenzhen for Power switch products will be introduced by Q1/Q2'2014. #### Marking and traceability: Unless otherwise stated by customer's specific requirement, the traceability of the parts assembled with the new material set will be ensured by date code and lot number. The changes here reported will not affect the electrical, dimensional and thermal parameters keeping unchanged all the information reported on the relevant datasheets. There is -as well- no change in the packing process or in the standard delivery quantities. Lack of acknowledgement of the PCN within 30 days will constitute acceptance of the change. After acknowledgement, lack of additional response within the 90 day period will constitute acceptance of the change (Jedec Standard No. 46-C). Shipments may start earlier with the customer's written agreement. ## **Qualification Report** Qualification of a new material set for SO8 package in Shenzhen for AAS Division General Information Product Line UM3701 Product Description Enhanced single channel power switches P/N STMPS2141MTR Product Group AMS Product division AAS Package Silicon Process technology Production mask set rev. AMS BCD6 Maturity level step from 20 to 30 | | Locations | |-----------------|--------------------| | Wafer fab | ST CATANIA - ITALY | | | | | Assembly plant | ST SHENZEN - CHINA | | | | | Reliability Lab | ST SHENZEN - CHINA | Done Reliability assessment #### **DOCUMENT INFORMATION** | Version | Date | Pages | Prepared by | Comment | |---------|-------------|-------|-------------|-------------| | 1.0 | 22-Jan-2014 | | JM Bugnard | First issue | | | | | | | | | | | | | Reference: Report ID 2014-W404 SO8 SHD SZH (Sandra Fassetta 22nd Jan 2014) Note: This report is a summary of the reliability trials performed in good faith by STMicroelectronics in order to evaluate the potential reliability risks during the product life using a set of defined test methods. This report does not imply for STMicroelectronics expressly or implicitly any contractual obligations other than as set forth in STMicroelectronics general terms and conditions of Sale. This report and its contents shall not be disclosed to a third party without previous written agreement from STMicroelectronics. #### **TABLE OF CONTENTS** | 1 | APP | LICABLE AND REFERENCE DOCUMENTS | 6 | |---|-----|----------------------------------|----| | 2 | GLO | SSARY | 6 | | | | IABILITY EVALUATION OVERVIEW | | | _ | 3.1 | OBJECTIVES | | | | 3.2 | CONCLUSION | | | 4 | DEV | ICE CHARACTERISTICS | | | | 4.1 | DEVICE DESCRIPTION | 7 | | | 4.2 | CONSTRUCTION NOTE | 8 | | 5 | TES | TS RESULTS SUMMARY | 9 | | | 5.1 | TEST VEHICLE | | | | 5.2 | TEST PLAN AND RESULTS SUMMARY | 9 | | 6 | ANN | EXES | 10 | | | 6.1 | DEVICE DETAILS | 10 | | | 6.2 | TESTS DESCRIPTION | 13 | | | 6.3 | WIRE PULL AND BALL SHEAR RESULTS | 14 | | | 6.4 | FINAL TESTING ROOM TEMPERATURE | 15 | ## 1 APPLICABLE AND REFERENCE DOCUMENTS | Document reference | Short description | |--------------------|--| | AEC-Q100 | Stress test qualification for automotive grade integrated circuits | | AEC-Q101 | Stress test qualification for automotive grade discrete semiconductors | | JESD47 | Stress-Test-Driven Qualification of Integrated Circuits | | | | #### **2 GLOSSARY** | DUT | Device Under Test | |-----|-----------------------| | PCB | Printed Circuit Board | | SS | Sample Size | | | | #### **3 RELIABILITY EVALUATION OVERVIEW** #### 3.1 Objectives The objective of this qualification is to qualify the new material set for power switch products produced in SO8 in ST Shenzhen with BCD6 technology. The qualification plan is based on the similarity and based on the JESD47 specification. #### 3.2 Conclusion Qualification Plan requirements have been fulfilled without exception. The reliability tests show that the device is behaving correctly against environmental tests (no failure). Moreover, the stability of electrical parameters during the accelerated tests demonstrates the ruggedness of the products and safe operation, which is consequently expected during their lifetime. Reliability agreement for the maturity 30 level is done for this qualification. #### **4 DEVICE CHARACTERISTICS** #### 4.1 Device description #### STMPS2141, STMPS2151, STMPS2161, STMPS2171 Enhanced single channel power switches Datasheet -production data #### **Features** - 90 mΩ high-side MOSFET switch - 500/1000 mA continuous current - Thermal and short-circuit protection with overcurrent logic output - Operating range from 2.7 to 5.5 V - CMOS and TTL compatible enable input - Undervoltage lockout (UVLO) - 12 µA maximum standby supply current - Ambient temperature range, -40 to 85 °C - 8 kV ESD protection - Reverse current protection - Fault blanking - UL recognized components (UL file number: E354278) #### Description The STMPS2141, STMPS2151, STMPS2161, STMPS2171 power distribution switches are intended for applications where heavy capacitive loads and short-circuits are likely to be encountered. These devices incorporate 90 m Ω N-channel MOSFET high-side power switches for power distribution. These switches are controlled by a logic enable input. When the output load exceeds the current limit threshold or a short is present, the device limits the output current to a safe level by switching into a constant current mode. When continuous heavy overloads and short-circuits increase the power dissipation in the switch, causing the junction temperature to rise, a thermal protection circuit shuts the switch off to prevent damage. Recovery from a thermal shutdown is automatic once the device has cooled sufficiently. Internal circuitry ensures the switch remains off until a valid input voltage is present. Table 1. Device summary | | Order codes | | Rated continuous output current | Enable | |--------------|--------------|----------------------|---------------------------------|-------------| | SO-8 | SOT23-5L | MSOP8 ⁽¹⁾ | (mA) | Lilable | | STMPS2141MTR | STMPS2141STR | STMPS2141TTR | 500 | Active low | | STMPS2151MTR | STMPS2151STR | STMPS2151TTR | 500 | Active high | | STMPS2161MTR | STMPS2161STR | STMPS2161TTR | 1000 | Active low | | STMPS2171MTR | STMPS2171STR | STMPS2171TTR | 1000 | Active high | MSOP8 package is also known as "TSSOP8". January 2013 Doc ID 13793 Rev 6 1/37 This is information on a product in full production. www.st.com ## 4.2 Construction note | | P/N STMPS2141MTR | P/N: ST1S31 | P/N L4931ABxx | |-------------------------------|--------------------|--------------------|--------------------| | Wafer/Die fab. information | | | | | Wafer fab manufacturing | ST CATANIA - ITALY | ST CATANIA - ITALY | ST Ang Mo Kio | | location | | | | | Technology | BCD | BCD | Bipolar | | Process family | BCD6 | BCD6 | Bipolar >6µm | | Die finishing back side | Raw Silicon | Cr/NiV/Au | Cr/NiV/Au | | Die size | 2098 x 598 μm | 1886x1541 μm | 1770x1850 UM | | Bond pad metallization layers | Ti/AlCu/TiNARC | Ti/AlCu/TiNARC | AlSiCu | | Passivation type | TEOS/SiN/Polyimide | TEOS/SiN/Polyimide | SiN | | Assembly information | | | | | Assembly site | ST SHENZEN - CHINA | ST SHENZEN - CHINA | ST SHENZEN - CHINA | | Package description | SO8 | SO8 | SO8 | | Molding compound | SUMITOMO EME- | SUMITOMO EME-G700K | SUMITOMO EME- | | | G700K | | G700K | | Frame material | Cu | Cu | Cu | | Die attach process | Glue | Glue | Glue | | Die attach material | ABLEBOND 8601S | ABLEBOND 8601S | ABLEBOND 8601S | | Die pad size | 280 x 81 μm | 90x90 90x200 | 90x90 90x200 | | Wire bonding process | Wire | Wire | Wire | | Wires bonding | Gold 1.3 mils | Gold 1.3 mils | Gold 1.3 mils | | materials/diameters | | | | | Lead finishing process | preplated | preplated | preplated | | Lead finishing/bump solder | NiThPdAgAu | NiThPdAu | NiThPdAu | | material | | | | | Final testing information | | | | | Testing location | ST SHENZEN - CHINA | ST SHENZEN - CHINA | ST SHENZEN - CHINA | | Tester | ASL1000 | ASL1000 | QT200 | | Test program | UM37J54SF | UA17 | LW2SFH50.CTS | ## **5** TESTS RESULTS SUMMARY ## 5.1 Test vehicle | Lot
| Assy Lot | Process/
Package | Product Line | Comments | |----------|----------------------------------|---------------------|--------------|------------------| | 1 | GK3240NQ01 | SO8 | UM3701 | RL: IKO7*UM37J54 | | 2 | GK1500kQ01 | SO8 | UA17 | RL: MZO7*UA17AA8 | | 3 | GK1121DS
GK1041Y2
GK1041Y2 | SO8 | LW05 | | Detailed results in below chapter will refer to P/N and Lot #. ## 5.2 Test plan and results summary #### P/N STMPS2141MTR | Toot | DC | Ctd not | Conditions | SS | Ctono | Failure/SS | | Note | | |---|------|-----------------|---|-----|-------------------------|--------------|--------------|--------------|------| | Test | PC | Std ref. | Conditions | 22 | Steps | Lot 1 | Lot 2 | Lot 3 | Note | | Package Orio | ente | d Tests | | | <u>-</u> | - | | | | | MSL | | | Bake 125°C @24hrs+85°C / 85%RH
@168hrs+reflow 260°C @3times | | Final | Pass | Pass | Pass | | | AC | Υ | JESD22
A-102 | Pa=2Atm / Ta=121°C | | 96 H
168 H | 0/78
0/78 | 0/77
0/77 | 0/77
0/77 | | | TC | Υ | JESD22
A-104 | Ta = -65°C to 150°C | | 100 cy
500 cy | 0/78
0/78 | 0/77 | 0/77
0/77 | | | ТНВ | Υ | JESD22
A-101 | Ta = 85°C, RH = 85%, BIAS=7V | | 1000h | | 0/77 | | | | Other Tests | | | | | | | | | | | FINAL
TESTING
room
temperature | | | | 100 | | Pass | | | | | SD
(Solderability) | N | AEC Q100 | Steam 8hrs, flux dwell 5s to 10s.
SnAgCu Temperature 245+/-3
degree | 50 | | Pass | | | | | PD (Physical dimension) | N | AEC Q100 | | 5 | | Pass | | | | | BPS (Bond
Pull Strength) | N | MIL –
STD683 | 30 Wires pull shear | 5 | 30 bonds /
5 devices | Pass | | | | | BS (Bond
shear
strength) | N | AECQ100 | 30 Wires ball shear | 5 | 30 bonds /
5 devices | Pass | | | | ## **6 ANNEXES** ### 6.1 Device details #### 6.1.1 Pin connection #### Pin connections #### Pin description Table 2. Pin description | | Pin number | | Name | Function | |------|------------|----------|-------|--| | SO-8 | MSOP8 | SOT23-5L | Name | Function | | 1 | 1 | 2 | GND | Ground | | 2 | 2 | 5 | IN | 2.7 - 5.5 V input | | 3 | 3 | - | IN | 2.7 - 5.5 V input | | 4 | 4 | 4 | EN | Enable for power switch | | 5 | 5 | 3 | FAULT | Open drain FAULT indicator, active low | | 6 | 6 | 1 | OUT | Output of power switch | | 7 | 7 | - | OUT | Output of power switch | | 8 | 8 | - | OUT | Output of power switch | #### 6.1.2 Bonding diagram TITLE: MOUNT BOND DIAGRAM FOR LINE UM37 S08 3068 FRAME PAD: 94×125 Mils MAX DIE SIZE: 84×115 Mils 2.38 \times 3.17 mm MAX DIE SIZE: 84×115 Mils 2.13 \times 2.92 mm #### 6.1.3 Package outline/Mechanical data TITLE: PLASTIC SMALL OUTLINE PACKAGE 8L PACKAGE CODE: O7 (O like OSCAR) PACKAGE WEIGHT: 0,0765 g/unit typ JEDEC/EIAJ REFERENCE NUMBER: JEDEC MS-012-AA | | | | DIMEN | ISIONS | | | 1 | |------|------|------------------|-------|--------|-----------------|--------|---------| | | | DATABOOK
(mm) | _ | | DRAWING
(mm) | _ | | | REF. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | NOTES | | Α | | | 1.75 | | | 1.74 | | | A1 | 0.10 | | 0.25 | 0.12 | 0.15 | 0.18 | | | A2 | 1.25 | | | 1.48 | 1.52 | 1.56 | | | b | 0.28 | | 0.48 | 0.375 | 0.40 | 0.425 | | | С | 0.17 | | 0.23 | 0.192 | 0.20 | 0.225 | | | D | 4.80 | 4.90 | 5.00 | 4.87 | 4.90 | 4.93 | (1) | | E | 5.80 | 6.00 | 6.20 | 5.90 | 6.00 | 6.10 | | | E1 | 3.80 | 3.90 | 4.00 | 3.87 | 3.90 | 3.93 | (2) | | e | | 1.27 | | | 1.27 | | | | h | 0.25 | | 0.50 | 0.425 | | 0.50 | | | L | 0.40 | | 1.27 | SEE LE | ADFRAME OF | PTIONS | | | L1 | | 1.04 | | | 1.05 | | | | k | 0 | | 8 | 2 | 4 | 8 | DEGREES | | ccc | | | 0.10 | | | 0.04 | | | | | | LEADFRAM | E OPTIONS | | | | |------|-------|-----------|----------|-----------|------------|-------|-------| | | | PREPLATED | | | POSTPLATED |) | | | REF. | MIN. | TYP. | MAX. | MIN. | TYP. | MAX. | NOTES | | L | 0.567 | 0.617 | 0.667 | 0.585 | 0.635 | 0.685 | | #### NOTES: - (1) Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15mm in total (both side). - (2) Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side. ## 6.2 Tests Description | Test name | Description | Purpose | | | | |---|---|---|--|--|--| | Die Oriented | | | | | | | HTOL Higt Temperature Operating Life HTB High Temperature | The device is stressed in static or dynamic configuration, approaching the operative max. absolute ratings in terms of junction temperature and bias condition. | accelerated way. | | | | | Bias | The device is stored in unbiased condition at | To investigate the failure mechanisms activated | | | | | HTSL High Temperature Storage Life | the max. temperature allowed by the | by high temperature, typically wire-bonds solder joint ageing, data retention faults, metal stress-voiding. | | | | | ELFR
Early Life Failure
Rate | The device is stressed in biased conditions at the max junction temperature. | To evaluate the defects inducing failure in early life. | | | | | Package Oriented | | | | | | | PC
Preconditioning | The device is submitted to a typical temperature profile used for surface mounting devices, after a controlled moisture absorption. | As stand-alone test: to investigate the moisture sensitivity level. As preconditioning before other reliability tests: to verify that the surface mounting stress does not impact on the subsequent reliability performance. The typical failure modes are "pop corn" effect and delamination. | | | | | AC
Auto Clave
(Pressure Pot) | The device is stored in saturated steam, at fixed and controlled conditions of pressure and temperature. | To investigate corrosion phenomena affecting | | | | | TC
Temperature
Cycling | The device is submitted to cycled temperature excursions, between a hot and a cold chamber in air atmosphere. | To investigate failure modes related to the thermo-mechanical stress induced by the different thermal expansion of the materials interacting in the die-package system. Typical failure modes are linked to metal displacement, dielectric cracking, molding compound delamination, wire-bonds failure, die-attach layer degradation. | | | | | THB Temperature Humidity Bias | The device is biased in static configuration minimizing its internal power dissipation, and stored at controlled conditions of ambient temperature and relative humidity. | To evaluate the package moisture resistance with electrical field applied, both electrolytic and galvanic corrosion are put in evidence. | | | | | Other | | | | | | | ESD Electro Static Discharge | The device is submitted to a high voltage peak on all his pins simulating ESD stress according to different simulation models. CBM: Charged Device Model HBM: Human Body Model MM: Machine Model | | | | | | LU
Latch-Up | The device is submitted to a direct current forced/sunk into the input/output pins. Removing the direct current no change in the supply current must be observed. | To verify the presence of bulk parasitic effect | | | | ## 6.3 Wire Pull and Ball Shear Results | No | | Wire pull
spec:6g | | | Ball s
spec: | | | | |-----------------|-----------------|----------------------|-------|------------------|-----------------|----|-------|--| | 1 | 17.21 | 16 | 17.54 | 1 | 48.43 | 16 | 63.16 | | | 2 | 17 | 17 | 17.2 | 2 | 49.53 | 17 | 61.03 | | | 3 | 16.38 | 18 | 17.88 | 3 | 43.8 | 18 | 64.39 | | | 4 | 16.73 | 19 | 17.67 | 4 | 47.68 | 19 | 52.24 | | | 5 | 17.62 | 20 | 16.7 | 5 | 49.94 | 20 | 50.06 | | | 6 | 16.6 | 21 | 16.34 | 6 | 46.16 | 21 | 48.61 | | | 7 | 17.26 | 22 | 17.43 | 7 | 53.17 | 22 | 49.27 | | | 8 | 17.35 | 23 | 17.41 | 8 | 59.61 | 23 | 61.03 | | | 9 | 18.22 | 24 | 16.7 | 9 | 53.89 | 24 | 64.39 | | | 10 | 17.64 | 25 | 17.04 | 10 | 55.93 | 25 | 52.24 | | | 11 | 18.23 | 26 | 17.85 | 11 | 58.21 | 26 | 48.06 | | | 12 | 17.15 | 27 | 17.96 | 12 | 64.7 | 27 | 48.61 | | | 13 | 17.74 | 28 | 19.31 | 13 | 52.33 | 28 | 49.27 | | | 14 | 17.56 | 29 | 16.93 | 14 | 63.41 | 29 | 48.61 | | | 15 | 16.97 | 30 | 17.69 | 15 | 55.16 | 30 | 49.57 | | | Avg | | 17.377 | | 53.749
18.801 | | | | | | *STDEV | | 1.868 | | | | | | | | CPK | | 6.087 | | | 1.731 | | | | | Failure
mode | Ball neck breck | | | Balls | | | | | Conclusion: WP/BS result within spec and CPK>1.67. ## 6.4 FINAL TESTING room temperature Comparison data: lot new version GK3430YL01, lot previous version GK24417A02 | Parameter | New material set Cpk | previous material set Cpk | |------------------|----------------------|---------------------------| | InPin versus GND | 74.37 | 90.17 | | En pin | 83.03 | 106.31 | | OC pin | 83.99 | 104.45 | | Out pin | 81.59 | 102.38 | | RdSon | 28.63 | 20.78 | | Vp | 4.27 | 4.16 | | VN | 4.31 | 4.12 | | Current In-IOFF | 8.09 | 7.54 | | Current IN-ION | 3.50 | 3.73 | | Current IN-IOFF | 8.17 | 7.61 | #### Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY. #### **RESTRICTIONS OF USE AND CONFIDENTIALITY OBLIGATIONS:** THIS DOCUMENT AND ITS ANNEXES CONTAIN ST PROPRIETARY AND CONFIDENTIAL INFORMATION. THE DISCLOSURE, DISTRIBUTION, PUBLICATION OF WHATSOEVER NATURE OR USE FOR ANY OTHER PURPOSE THAN PROVIDED IN THIS DOCUMENT OF ANY INFORMATION CONTAINED IN THIS DOCUMENT AND ITS ANNEXES IS SUBMITTED TO ST PRIOR EXPRESS AUTHORIZATION. ANY UNAUTHORIZED REVIEW, USE, DISCLOSURE OR DISTRIBUTION OF SUCH INFORMATION IS EXPRESSLY PROHIBITED. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners © 2014 STMicroelectronics - All rights reserved. STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com